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The better way:
Use memory more efficiently




Indexes are LARGE

Benchmark % space for index Hybrid Index

TPC-C 98% | =2 34%

Voter 55% — 41%
Articles 34% - 18%



Our Contributions
@ The hybrid index architecture

@ The Dual-Stage Transformation
@ Applied to 4 index structures

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)
Performance Space

— 30-70% §



Did we solve this problem?

”~N

£ Stay tuned

E A

£ 20K HM

< 0 2M 4M 6M 8M 10M
C

@))

=5 N

O

C

|_

Transactions Executed



How do hybrid indexes achieve
memory savings ?
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Hybrid Index: a dual-stage architecture

dynamic stage static stage
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Inserts are batched in the dynamic stage

dynamic stage static stage
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Reads search the stages in order
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A Bloom filter improves read performance

@ read >V @2@\
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g Memory-efficient
g Skew-aware

dynamic stage

static stage
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The Dual-Stage Transformation

dynamic stage static stage
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The Dynamic-to-Static Rules

;f Compaction

(X) Reduction

E Compression
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2% Compaction: minimize # of memory blocks
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2% Compaction: minimize # of memory blocks
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% Reduction: minimize structural overhead
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% Reduction: minimize structural overhead
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The Dual-Stage Transformation

dynamic stage static stage
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The Dual-Stage Transformation

dynamic stage static stage
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TPC-C on H -Store
Throughput (txn/s)
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Did we solve this problem?
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Throughput (txn/s)

Yes, we improved the DBMS’s capacity!
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Throughput (txn/s)

TPC-C on H -Store

Memory (GB)

60K pe———~ e e\ B+tree
0] 4
60K Hybrid

0 2M 4M 6M 8M 10M
8 B+tree PV el b
DISKTUpPIres
4 In=memory tuptes
Indexes
8
4

Transactions Executed 21



TPC-C on H -Store
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TPC-C on H -Store
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TPC-C on H -Store
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TPC-C on H -Store
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TPC-C on
Memory (GB)

Memory saved

by indexes
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This is just the BEGINNING



Conclusions

(‘D The hybrid index architecture GENERAL

@ The Dual-Stage Transformation PRACTICAL

@ Applied to 4 index structures USEFUL

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)
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Toll-Free Hotline:

\;\ 1-844-88-CMUDB




