Carnegie
MelloeI?‘
University

| head of
Reducing the Storage Over _

Main-Memory OLTP Databases with kel L]

Hybrld Indexes David G. Andersen

I
”Andrew Pavlo

Michae] Kaminsky

Huanchen Zhang Lin Ma

Rui Shen

Hi=

OO0

AYou are running out of memory

Hi=

D00

Buy more 0 ?

i
il

0

AYou are running out of memory

Throughput

Memory (GB)

510]3¢

2{0] .4

TPC-C on H -Store

Memory Limit = 5GB

Ve e NV W
0 2M 4M 6M 8M
Transactions Executed
N\ |
Disk tuples
In-memory tuptes
Indexes

10M

The better way:
Use memory more efficiently

Indexes are LARGE

Benchmark % space for index Hybrid Index

TPC-C 98% | =2 34%

Voter 55% — 41%
Articles 34% - 18%

Our Contributions
@ The hybrid index architecture

@ The Dual-Stage Transformation
@ Applied to 4 index structures

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)
Performance Space

— 30-70% §

Did we solve this problem?

”~N

£ Stay tuned

E A

£ 20K HM

< 0 2M 4M 6M 8M 10M
C

@))

=5 N

O

C

|_

Transactions Executed

How do hybrid indexes achieve
memory savings ?

0— Static

Hybrid Index: a dual-stage architecture

dynamic stage static stage

10

Inserts are batched in the dynamic stage

dynamic stage static stage

11

Reads search the stages in order

O,

\c

dynamic stage static stage

12

A Bloom filter improves read performance

@ read >V @2@\

dynamic stage static stage

13

g Memory-efficient
g Skew-aware

dynamic stage

static stage

14

The Dual-Stage Transformation

dynamic stage static stage

15

The Dynamic-to-Static Rules

;f Compaction

(X) Reduction

E Compression

16

2% Compaction: minimize # of memory blocks

4

11

12

17

2% Compaction: minimize # of memory blocks

3 415]6 71819 10111112
C d \ h i1k | | m] n
e| f| g

17

% Reduction: minimize structural overhead

9

\

NS

\ | N
718

11

12

j

18

% Reduction: minimize structural overhead

31619
’ ,‘ \
, \
// // l' \
Pid / I \
7’ / 1 \
PR / | \
/ \
// / I \
// / I \
r's | 2 4 P
112|314 |5|]6|7|18]|]9]|10|11]|12
alb|lc]|d \ hli]|]j|Kk m]| n
e| f|g

18

The Dual-Stage Transformation

dynamic stage static stage

19

The Dual-Stage Transformation

dynamic stage static stage

19

TPC-C on H -Store
Throughput (txn/s)

60K

2{0] .4

Did we solve this problem?

B+tree

A

[

0 2M A\ 6M

Transactions Executed

8M

10M

20

Throughput (txn/s)

Yes, we improved the DBMS’s capacity!

B+tree
60K ‘mw‘,
A
20K HM
0] 2M 4 M 6M 8M 10M
Hybrid
60K Mo VAN A W W N\
20K V }t

Transactions Executed

20

Throughput (txn/s)

TPC-C on H -Store

Memory (GB)

60K pe———~ e e\ B+tree
0] 4
60K Hybrid

0 2M 4M 6M 8M 10M
8 B+tree PV el b
DISKTUpPIres
4 In=memory tuptes
Indexes
8
4

Transactions Executed 21

TPC-C on H -Store

Memory (GB)

Throughput (txn/s)

B+tree

20K

0 2M AM 6M 8M 10M
8 B+tree Pl t ol
DISKTUpPIres
4 In=memory tuptes
Indexes
8

Transactions Executed 21

TPC-C on H -Store

Memory (GB)

Throughput (txn/s)

60K |

B+tree

20K

60K P~

Hybrid

20K

10M

Indexes

Transactions Executed

21

TPC-C on H -Store

Memory (GB)

Throughput (txn/s)

60K |

20K

20K

B+tree

Indexes

Transactions Executed

21

TPC-C on H -Store

Memory (GB)

Throughput (txn/s)

60K |

20K

20K

10M

B+tree
60K “%fvvvvé Hybrid
8M
Disk-tuptes
In=memory tuptes
Indexes

Transactions Executed

21

TPC-C on
Memory (GB)

Memory saved

by indexes

2M

9

oM

Larger working
set in memory — throughput

Higher

B+tree

Indexes

N

Transactions Executed

21

This is just the BEGINNING

Conclusions

(‘D The hybrid index architecture GENERAL

@ The Dual-Stage Transformation PRACTICAL

@ Applied to 4 index structures USEFUL

- B+tree - Skip List
- Masstree - Adaptive Radix Tree (ART)

23

Toll-Free Hotline:

\;\ 1-844-88-CMUDB

