Magical Parallel

OLTP Databases

November 10" 2011 - MITCSAIL

Databases? Evan Jones?

Lebronis going The McRib will be Michael Jackson is
to Miami! back! ~introuble!

Processing

oluc’f. tauus(unuh ~-'
13:13

Fast Repetitive Small

H-Store

Database Node

Txn Coordinator

[Execution Engine][Execution Engine]

Partition Partition
Data Data

® Tt e L I e e I I I O I

H-Store Partitioning

P1 P2 P3 P4 PS5

PL | i P2
| omEm | [mEm
___,/
P3 | i P4
{ mem | | mem
__/ ___,/
P5
ITEM
N\ —

Tables Partitions

ewOrder extends StoredProcedure {

GetWarehouse "SELECT * FROM WAREHOUSE WHERE W ID = ?";
Query CheckStock "SELECT S QTY FROM STOCK
WHERE S W ID = ? AND S I ID = ?";
Query InsertOrder "INSERT INTO ORDERS VALUES (?,7?)";
Query InsertOrdLine "INSERT INTO ORDER LINE VALUES (?,7?,7?,?)";

Query UpdateStock "UPDATE STOCK SET S QTY = S QTY - ?
WHERE S W ID = ? AND S I ID = ?";

run(int w id, int i ids[], int i w ids[], int i qtys[]) {
queueSQL (GetWarehouse, w 1id);
for (int i = 0; i < i ids.length; i++)

queueSQL (CheckStock, 1 w ids[i], 1 ids[i]).
Result r[] = executeBatch();

int o id = r[0].get("W NEXT 0 ID") + 1;

queueSQL(InsertOrder, w id, o id);

for (int i = 0; i < r.length; i++) {
if (r[i+1].get("S QTY") < i qtys[i]) abort();
queueSQL(InsertOrderLine, w id, o id, i ids[i], 1 qtys[i]);
queueSQL (UpdateStock, i qtys[i], 1 w ids[i], i ids[i]);

}

return (executeBatch() '= null);

H-Store Cluster

4)

Database Node Database Node Database Node

Pro ced u re N a m e Execution Engine |- Execution Engine Execution Engine || Execution Engine Execution Engine |...[Execution Engine
Input Parameters

Partition Partition Partition Partition Partition Partition
Data Data Data Data Data Data
i g s g . | TR YR RREN g

Database Node Database Node

Partition Partition
Data Data
. L g

/

Database Node Database Node

(I . t
. . Execution Engine |-..| Execution Engine Execution Engine |-..| Execution Engine Execution Engine |...| Execution Engine
Ap p I I cat I on Partition ! l Partition I iti Partition l Partition l I Partition l
g e . [T) g e

Data Data Data Data

Data

‘. ‘ This transaction will
execute 4 queries on
partltlons 1 3 and 6!

Optimization #1

/

Client
Application

r1 [

p2 [

~ r3 [N

__ r IS

Database Node

Database Node

Database Node
Cor~

Ex ‘l!inn En he

Database Node
Txn Coordinator g

Database Node

Optimization #2

Database Node Database Node Database Node
SYE |

Pz - Execution Engine [...| Execution Engine
P3 - lPartilinn l I Partition l Partition
e I o g P

Data Data Data
P PR s
. e[

Database Node Database Node Database Node

Execution Engine |-.| Execution Engine

Partition ' Partition Partition
Data \ Data Data
i Pt

Partition Partition
Data Data

/

Database Node

Client

0 0 Execution Engine |-.-| Execution Engine Execution Engine Execution Engine
Ap p I I Cat I o n Partition Partition Partition Partition Partition
Data Data Data Data Data

Optimization #2

/

Client
Application

-

Database Node

Execution Engine |..| Execution Engine

Database Node

Execution Engine

Execution Engine

Partition Partition
Data Data
. ars g1 .

Database Node

Execution Engine

Partition Partition
Data Data
- TSRV R R 0

Partition Partition
Data Data
o =~

Natabase Node

Partition
Data

Database Node

Database Node

Execution Engine |-.-| Execution Engine

Database Node

Execution Engine |-..| Execution Engine

Database Node

Execution Engine |-..| Execution Engine

Partition Partition
Data Data

Partition Partition
Data Data

Partition Partition
Data Data

Optimization #3

class NewOrder extends StoredProcedure {

Query GetWarehouse “SELECT * FROM WAREHOUSE WHERE W ID = ?";
Query CheckStock "SELECT S _QTY FROM STOCK

WHERE S W ID = ? AND S I ID = ?";
"INSERT INTO ORDERS VALUES (?,7?)";

"INSERT INTO ORDER LINE VALUES (?,7,7,7)";

"UPDATE STOCK SET S QTY = S QTY - ?
WHERE S W ID = ? AND S I ID = ?";

int run(int w id, int i ids[], int i w ids[], int i qtys]
queueSQL (GetWarehouse, w_id);
for (int i = 0; i < i ids.length; i++)

queueSQL (CheckStock, i w ids[i], i ids[i]);
Result r[] = executeBatch();
int o id = r[0].get("W NEXT 0 ID") + 1;
queueSQL(InsertOrder, w_id, o_id);
for (int i = 0; i < r.length; i++) {
if (r[i+1].get("S QTY") < i qtys[i]) abort();
queueSQL(InsertOrderLine, w_id, o _id, i ids[i], i qtys[il]);
queueSQL (UpdateStock, i qtys[i], i w ids[i], i ids[i]);

Query InsertOrder
Query InsertOrdLine
Query UpdateStock

}

return (executeBatch() '= null);

€ D

InsertOrder

InsertOrderLine
UpdateStock

InsertOrderLine
(@ UpdateStock

/

STOP LOGGING

Database Node

Txn Coordinator

Core Core

. o~ ~o |
Execution Engine][Execution Engine

Partition Partition
Data) Data

L e e I I I o I

D I T e e e I I O T I T VO I O O |

Optimization #4

class NewOrder extends StoredProcedure {

Query GetWarehouse “SELECT * FROM WAREHOUSE WHERE W ID = ?";
Query CheckStock "SELECT S _QTY FROM STOCK
WHERE S W ID = ? AND S I ID = ?";
Query InsertOrder "INSERT INTO ORDERS VALUES (?,7?)";
Query InsertOrdLine "INSERT INTO ORDER LINE VALUES (?,7,7,7)";

Query UpdateStock "UPDATE STOCK SET S QTY = S QTY - ?
WHERE S W ID = ? AND S I ID = ?";

int run(int w id, int i ids[], int i w ids[], int i qtys]
queueSQL (GetWarehouse, w_id);
for (int i = 0; i < i ids.length; i++)

queueSQL (CheckStock, i w ids[i], i ids[i]);
Result r[] = executeBatch();

int o id = r[0].get("W NEXT 0 ID") + 1;

queueSQL(InsertOrder, w id, o id);

for (int i = 0; i < r.length; i++) {
if (r[i+1].get("S QTY") < i qtys[i]) abort();
queueSQL(InsertOrderLine, w_id, o _id, i ids[i], i qtys[il]);
queueSQL (UpdateStock, i qtys[i], i w ids[i], i ids[i]);

}

return (executeBatch() '= null);

Database Node

{

> —
.| Exe ﬁtiont]

Database Node

Txn Coordinator

Core

—~
Exe ttion Ei

{

i
...| Exe tﬁon E

Core

I

Why this Matters

Assume Distributed =¢=Assume Single-Partition =¢=Magic Mode
14000

12000

Throughput 10000

(txn/s) 2000

6000

4000

2000

0
4 8 16 32 64

Number of Partitions

(anadians do not

like unnecessary
surgeries.

On Predictive Modeling for

Optimizing Transaction Execution

in Parallel

OLTP Systems

On Predictive Modeling for Optimizing Transaction
Execution in Parallel OLTP Systems

Andrew Pavlo Evan P.C. Jones Stanley Zdonik
MIT CSAIL Bl

Brown University

rown University

pavio@cs.brown.edu evanj@mit.edu sbz@cs.brown.edu

ABSTRACT

A new emerging class of parallel datsbase management systems
(DBMS) is designed to take advantage of the partitionable work-
loads of on-line transaction processing (OLTP) applications (23
20]. Transactions in these systems are optimized 10 execute 10 com-
pletion on a single node in a shared-nothing cluster without need-
ing 10 coordinate with other nodes or use expensive concurrency
control measures [18]. But some OLTP applications cannot be par-
titioned such that all of their transactions execute within a i
partition in this manner. These distributed transactions access data
not stored within their local partitions and subsequently require
more heavy-weight concurrency control protocols. Further difficul-
ties arise when the transaction’s execution properties. such as the
number of partitions it may need to access or whether it will abort
are not known beforehand. The DBMS could mitigate these per
formance issues if it is provided with additional information about
transactions. Thus, in this paper we present a Markov model-based
approach for automatically selecting which optimizations a DBMS
could use, namely (1) more efficient concurrency control schemes.
(2) intelligent scheduling. (3) reduced undo logging. and (4) spec-
ulative execution. To evaluate our techniques, we implemented our
models and integrated them into a parallel. main-memory OLTP
DBMS 1o show that we can improve the performance of applica-
tions with diverse workloads.

1. INTRODUCTION

Shared-nothing parallel databases are touted for their ability to
execute OLTP workloads with high throughput. In such systems.
data is spread across shared-nothing servers into disjoint segments
called partitions. OLTP workloads have three salient characteris
tics that make them amenable to this environment: (1) transactions
are short-lived (i.e., no user stalls), (2) transactions touch a small
subset of data using index look-ups (ie.. no full table scans or larg
distributed joins), and (3) transactions are repetitive (i.e., executing
the same queries with different inputs) [23]

Even with careful partitioning (7], achieving good performance
with this architecture requires significant tuning because of dis-
tributed transactions that access multiple partitions. Such trans-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
ot made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise. to
republish, to paston servers ar to redistribute to liss, requires prior specific
permission andor a fee. Articles from this volume were invited to present
their results at The 38th Intemational Conference on Very Large Data Bases,
ugust 27th - 315t 2012, Istanbul, Turkey

dowmen, Vol. 5, No. 2

owment 2150-80¢ 0...$ 1000,

actions require the DBMS 1o either (1) block other transactions
from using each partition until that transaction finishes or (2) use
fine-grained locking with deadlock detection to execute transac
tions concurrently [18]. Ineither strategy, the DBMS may alsoneed
1o maintain an undo buffer in case the transaction aborts. Avoiding
such onerous concurrency control is important, since it has been
shown to be approximately 30% of the CPU overhead for OLTP
workloads in traditional databases [14]. Todo so, however. uires
have additional information about transactions be-
fore they start. For example. if the DBMS knows that a transaction
only needs to access data at one partition, then that transaction can
be redirected to the machine with that data and executed without
currency control schemes [2:
actical, however, to require users o explicitly inform
the DBMS how individual transactions are going 10 behave.
is especially true for complex applications where a change
database’s configuration, such as its partitioning schy
transactions” execution properties. Hence, in this paper we present
anovel method to automatically select which optimizations the DB-
MS can apply to transactions at runtime using Markov models. A
Markov model is a probabilistic model that. given the current state
of a transaction (e.g., which query it just executed), captures the
probability distribution of what actions that transaction will pe
form in the future. Based on this prediction, the DBMS can then
enable the proper optimizations. Our approach has minimal ovel
head, and thus it can be used on-line to observe requests to make im-
mediate predictions on transaction behavior without additional in-
formation from the user. We assume that the benefit outweighs the
cost when the prediction is wrong. This paper is focused on stored
procedure-based transactions, which have four properties that can
be exploited if they are known in advance: (1) how much data
is accessed on each node. (2) what partitions will the transaction
read/write, (3) whether the transaction could abort, and (4) when
the transaction will be finished with a partition
We begin with an overview of the optimizations used to improve
the throughput of OLTP workloads. We then describe our primary
contribution: representing transactions as Markov models in a way
that allows a DBMS to decide which of these optimizations to em-
ploy based on the most likely behavior of a transaction. Next, we
present Houdini, an on-line framework that uses these models to
generate predictions about transactions before they start. We have
integrated this framework into the H-Store system [2] and measure
its ability 1o optimize three OLTP benchmarks. The results from
these experiments demonstrate that our models select the proper
optimizations for 93% of transactions and improve the throughput
of the system by 41% on average with an overhead of 5% of Uk
total transaction execution time. Although our work is described in
the context of H-Store, it is applicable to similar OLTP systems.

%3 Houdini

-

Database Node Database Node

Txn Coordinator, 0 Txn Coordinator
pre 3 :

-
— o

l Partition Partition Partition

Data Data Data
P pmp—— L . PR P, o

Database Node Database Node Database Node
‘ . Core Core ' Core Corr : Core
xecution Engine |...| Execution Engine xecution Engine [...| Execution Engine x(tion En ...| Execution Engine
Pa 0 P 0 P 0 P 0 P 0
D D Da D D

/

e Core

Client
Application

xecution Engine |-.| Execution Engine xecution Engin

Use models to

predict before
execution.

) 0.50

r QueryName

50 S

r QueryName

Counter: 0 Counter: 0
Partitions: { 1 } Partitions: { 0 }
Previous: O Previous: @

).96

QueryName
Counter: 1
Partitions: { 0 }
Previous: { 0 }

0.50 0.50

GetWarehouse | |GetWarehouse
Counter: 0 Counter: 0
Partitions: { 1 } Partitions: { 0 }
. B . B class NewOrder extends StoredProcedure {
0'96 SECREEE @ LR ER @ Query GetWarehouse "SELECT * FROM WAREHOUSE WHERE W ID = ?";
CheckStock "SELECT S oM STOC
0_04* ‘0.04 query CheckStoc WHERE S H_TD = 7 AND S I 1D = 75
Query InsertOrder "INSERT INTO ORDERS VALUES (?,7)";
Query InsertOrdLine "INSERT INTO ORDER LINE VALUES (7,7,7,7)";
CheckStock CheckStock CheckStock CheckStock Query UpdateStock "UPDATE STOCK SET S QTY = S QTY - ?
Counter: 0 Counter: 0 Counter: 0 Counter: 0 WHERE S W_ID = 7 AND S I ID = ?;
Partitions: { 1 } Partitions: { 0 } Partitions: { 1} Partitions: { 0 } int run(int w_id, int i_ids[], int i w_ids[], int i_qtys[]) {
0 50 Previous: { 1 } Previous: { 1 } Previous: { 0 } Previous: { 0 } queueSQL (GetWarehouse, w_id);
* 0.49 01 0.0 for (int i = 0; i < i_ids.length; i++)
o o . queueSQL(CheckStock, i_w_ids[i], i_ids[i]);
0.36‘ 0.64 *0033 Result r[] = executeBatch();
i id = r[0].get(" 0 10" ;
CheckStock || CheckStock | [CheckStock CheckStock | | CheckStock areugSQL (Ineertovger. sa o iay:
Counter: 1 Counter: 1 Counter: 1 Counter: 1 Counter: 1 Counter: for (int i = 0; i < r.length; i++) {
Partitions: { 1 } | |Partitions: { 0 } Partitions: { 1} |().6 Partitions: { 0 } Partitions: { 1 }||partitions: if (r(i+1].get("s QTY") < i qtys[i]) abort();)
Previous: { 1 } Previous: { 1 } Previous: { 0, 1 } Previous: { 0, 1 } Previous: { 0 } Previous: { queueSQL(InsertOrderLine, w_id, o_id, i ids[i], i_qtys[i]);
queueSQL (UpdateStock, i qtys[i], i w ids[i], i ids[i]);
}
\ 1.00 I.OM . ‘ / /1.00 1 00 1000 ‘ return (executeBatch() != null);
InsertOrder InsertOrder InsertOrder InsertOrd¢
Counter: 0 Counter: 0 Counter: 0 Counter: 0
Partitions: { 1 } Partitions: { 1 } Partitions: { 0 } Partitions: { 0 }
Previous: { 1 } Previous: { 0, 1 } Previous: { 0, 1} Previous: { 0 }
.99 .16 0.99
‘Q 0.7 2 0.23 y
G
UpdateStock UpdateStock f| UpdateStock | (.01 UpdateStock
Counter: 0 Counter: 0 Counter: 0 Counter: 0
Partitions: { 1 } Partitions: { 0 } Partitions: { 1 } Partitions: { 0 }
Previous: { 1 } N Previous: { 0, 1} Previous: { 0, 1} Previous: { 0 }
_
\ 1.00 . | 0.74 .00
0.01 InsertOrdLine InsertOrdLine . |InsertOrdLine InsertOrdLine
O'OOI Counter: 0 Counter: 0 Counter: 0 Counter: 0
Partitions: { 1 } Partitions: { 1 } Partitions: { 0 } Partitions: { 0 }
Previous: { 1 } Previous: { 0, 1 } hK_ Previous: { 0, 1 } Previous: { 0 }
7
N 000) | NET02Y N2y 50
UpdateStock UpdateStock | | UpdateStock UpdateStock
Counter: 1 Counter: 1 Counter: 1 0 50 Counter: 1
Partitions: { 1 } Partitions: { 1 } Partitions: { 0 } * Partitions: { 0 }

Previous: { 1} Previous: { 0, 1} Previous: { 0, 1} Previous: { 0 }
0.44 0. 56 \0.52 (05 .
0.48 .
InsertOrdLine InsertOrdLine InsertOrdLine InsertOrdLine
Counter: 1 Counter: 1 Counter: 1 Counter: 1

Partitions: { 1 } Partitions: { 0 } Partitions: { 1 }
Previous: { 1 } Previous: { 0, 1} Previous: { 0, 1}

~—\..00 7 \n--- 0.06-%
T : ;.00
commit

Partitions: { 0 }
Previous: { 0 }

0.01

Estimate the path

that a transaction
will take

Determine which

optimizations to
enable.

Current State:

r CheckStock

Counter: 0
Partitions: { 0 }
Previous: { 1 }

>heckStock

Counter: 1
rtitions: { 1 } §().6
evious: { 0, 1 }

Count
Part1t1 738

, CheckStock

Counter: 0
Partitions: { 1 }
Previous: { 0 }

r CheckStock

Counter: 1
Partitions: { 0 }
Previous: { 0, 1]

_ 71 00‘1/m

w | Input Parameters:

GetWarehouse

Partciot}.?ot:si: {0 0} i W_i d=0 i
Previous: @ E i_w_id: [O y 1] i_idS: i
r 1 [1001,1002] |

CheckStock """"""""""""""""""""""
Partitions:. {0 0} 0 ()

Erevious: (0 Transaction Estimate:

T Confidence Coefficient: 0.56
SEgistone (LK Best Partition: 0
UndateStock Use Undo Logging: Yes
P;;;i%:;{{o%} Partitions Read: { 0 }

Partitions Written: {0}
InsertOrdLine .
e R Partitions Done: {1,2,3}

Previous: { 0 }

Long/wide models.

Keeping models in synch.
Incorrect predictions.

CheckStock

Counter: 0
Partitions: { 0 }
Previous: { 0 }

0.0

Che ock
Count 1
Part1t1 e { 19

, CheckStock

Counter: 1
Partitions: { 0 }
Previous: { 0 }

UpdateStock

Crnimntar: N

0.01

InsertOrder:

: INSERT INTC

i (o 1d, o w_id
\VALUES (2, 02); i

SUNDAY

SEPTEMBER 16

-
2 1

Partition models

based on input
properties.

HashValue(w _id)

ArrayLength(i_ids)

)

Fartitions: (1)
Previous: {0 }

[UpdaleStock] [UpdateStock
Countar: 0 Countac: 0
Pactitions: (1) Pastitions: (0)
Provicus: (0) (0.1}
LOl]l 0.01 |.ou‘
|InsertOrdLine InsertOrdLine
Counter: 0 Countar: 0

|

x).no

commit

Partitions: {1}
o)

CheckStock
Countar: 0

Previcus: (

Counter: 1
Partitions: (1)
previous: {0, 1}

Count
Partitions: {0 |
Previcus: (0, 1}

130\ $1.00 1.00;‘

|

InsertOrdLine InsertOrdLine
Countar:

Partitions: { 0) Partitions: (0)

|

1 Counter: 1
Provicus: (0, 1) Previous: { 0}
uy
1.

ength(i_ids)

UpdateStock

Countar: 0

Faztitions: (0)
ous: (0)

astitions: (1)
revious: { 0, 1

[UpdateStock]
=

T

01

InsertOrdLine
Counter: 0

commit

InsertOrdLine
Counter: 1
Pactitions: (1)
Previous: {0, 1)

InsertOrdLine

Partitions: { 1)
Previous: (0)

|

1.0

0.50

rGetWarehouse‘ IJD.P.Ut.P.a.LaJ!!.E.t@!_S_-_____________________l
Counter: 0 iV{_JiCi==C) i
i i w_id=[O{1l) i_ids= |

! [1001,1002

ChechStoch:

[e e e S e e e e

! SELECT S QTY FRGM

J WHERE S W ID ={2_
= 7

11.00 , 099 { _AND S T ID =72 |

0.04 /

ackStock

ounter: 0
Eiong:{E TN
rious: { 0 }

CheckStock

Counter: 0
Partitions: { 0 }
Previous: { 0 }

Ch?tock
Co]
PartitigNis: { 0 }
E Previo.: { 0})
41.00

[InsertOrder 1

Counter: 0

ackStock 1

ounter: 1
.tions: { 0 }
ous: { 0, 1 }J

¥1.00

nsertOrder
Counter: 0

Execute txn at the best partition.
Only lock the partitions needed.

Disable undo logging if not needed.
Speculatively commit transactions.

Estimate initial path.
Update as transaction executes.

Recompute if workload changes.
Partition for better accuracy.

Model Accuracy

@ Global Model D Partitioned Models

OP1 0P2 OP3 0P4

OP1 0P2 OP3 0P4 | OP1 0P2 OP3 OP4

TATP TPC-(' AuctionMark
94.9% 05.0% 90.2%

Estimation Overhead

[Other

B Estimation [] Execution [Planning [Coordination
100% B

80%

60%

40%

20%

0%

ABCDEFG«HIJKL - -MNOPORSTUYV

TATP TPC-C AuctionMark

Throughput

==Assume Single-Partition ==Global Model ==PartitionedModels

~~

16 32

Number of Partitions

16 32

Number of Partitions

16 32

Number of Partitions

TATP
+57%

TPC-C
+126%

AuctionMark
+117%

Small overhead

cost improves
throughput.

hstore.cs.brown.edu

Future work

class NewOrder extends StoredProcedure {

Query GetWarehouse “"SELECT * FROM WAREHOUSE WHERE W ID = ?";
Query CheckStock "SELECT S _QTY FROM STOCK
WHERE S W ID = ? AND S I ID = ?";
Query InsertOrder "INSERT INTO ORDERS VALUES (?,7?)";
Query InsertOrdLine "INSERT INTO ORDER LINE VALUES (?,7?,7?,7)";

Query UpdateStock = "UPDATE STOCK SET S QTY = S QTY - ?
WHERE S W ID = ? AND S I ID = ?";

int run(int w id, int i ids[], int i w ids[], int i gdlys
queueSQL (GetWarehouse, w_id);
for (int i = 0; i < i ids.length; i++)

queueSQL (CheckStock, i w ids[i], i ids[i]);

Result r[] = executeBatch();

int o id = r[0].get("W NEXT 0 ID") + 1;

queueSQL (InsertOrder, w_id, o_id);

for (int 1 = 0; i < r.length; i++) {
if (r[i+1].get("S QTY") < i qtys[i]) abort();
queueSQL(InsertOrderLine, w_id, o id, i ids[i], i qtys[i]);
queueSQL (UpdateStock, i qtys[i], i w ids[i], i _ids[i]);

}

return (executeBatch() != null);

Counter: 0
Partitions: { 0 }

GetWarehouse
Counter: 0
Partitions: { 0 }
Previous: @

CheckStock
Counter: 0
Partitions: { 0 }
Previous: { 0 }

‘---1;----1

InsertOrder
Counter: 0
Partitions: { 0 }
Previous: { 0 }

r

UpdateStock1

Previous: { 0 }

InsertOrdLine
Counter: 0
Partitions: { 0 }
Previous: { 0 }

v

