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ewOrder extends StoredProcedure {

GetWarehouse "SELECT * FROM WAREHOUSE WHERE W ID = ?";
Query CheckStock "SELECT S QTY FROM STOCK
WHERE S W ID = ? AND S I ID = ?";
Query InsertOrder "INSERT INTO ORDERS VALUES (?,7?)";
Query InsertOrdLine "INSERT INTO ORDER LINE VALUES (?,7?,7?,?)";

Query UpdateStock "UPDATE STOCK SET S QTY = S QTY - ?
WHERE S W ID = ? AND S I ID = ?";

run(int w id, int i ids[], int i w ids[], int i qtys[]) {
queueSQL (GetWarehouse, w 1id);
for (int i = 0; i < i ids.length; i++)

queueSQL (CheckStock, 1 w ids[i], 1 ids[i]).
Result r[] = executeBatch();

int o id = r[0].get("W NEXT 0 ID") + 1;

queueSQL(InsertOrder, w id, o id);

for (int i = 0; i < r.length; i++) {
if (r[i+1].get("S QTY") < i qtys[i]) abort();
queueSQL(InsertOrderLine, w id, o id, i ids[i], 1 qtys[i]);
queueSQL (UpdateStock, i qtys[i], 1 w ids[i], i ids[i]);

}

return (executeBatch() '= null);
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Optimization #1
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Optimization #2
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Optimization #2
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Optimization #3

class NewOrder extends StoredProcedure {

Query GetWarehouse “SELECT * FROM WAREHOUSE WHERE W ID = ?";
Query CheckStock "SELECT S _QTY FROM STOCK

WHERE S W ID = ? AND S I ID = ?";
"INSERT INTO ORDERS VALUES (?,7?)";

"INSERT INTO ORDER LINE VALUES (?,7,7,7)";

"UPDATE STOCK SET S QTY = S QTY - ?
WHERE S W ID = ? AND S I ID = ?";

int run(int w id, int i ids[], int i w ids[], int i qtys]
queueSQL (GetWarehouse, w_id);
for (int i = 0; i < i ids.length; i++)

queueSQL (CheckStock, i w ids[i], i ids[i]);
Result r[] = executeBatch();
int o id = r[0].get("W NEXT 0 ID") + 1;
queueSQL(InsertOrder, w_id, o_id);
for (int i = 0; i < r.length; i++) {
if (r[i+1].get("S QTY") < i qtys[i]) abort();
queueSQL(InsertOrderLine, w_id, o _id, i ids[i], i qtys[il]);
queueSQL (UpdateStock, i qtys[i], i w ids[i], i ids[i]);

Query InsertOrder
Query InsertOrdLine
Query UpdateStock

}

return (executeBatch() '= null);
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Optimization #4

class NewOrder extends StoredProcedure {

Query GetWarehouse “SELECT * FROM WAREHOUSE WHERE W ID = ?";
Query CheckStock "SELECT S _QTY FROM STOCK
WHERE S W ID = ? AND S I ID = ?";
Query InsertOrder "INSERT INTO ORDERS VALUES (?,7?)";
Query InsertOrdLine "INSERT INTO ORDER LINE VALUES (?,7,7,7)";

Query UpdateStock "UPDATE STOCK SET S QTY = S QTY - ?
WHERE S W ID = ? AND S I ID = ?";

int run(int w id, int i ids[], int i w ids[], int i qtys]
queueSQL (GetWarehouse, w_id);
for (int i = 0; i < i ids.length; i++)

queueSQL (CheckStock, i w ids[i], i ids[i]);
Result r[] = executeBatch();

int o id = r[0].get("W NEXT 0 ID") + 1;

queueSQL(InsertOrder, w id, o id);

for (int i = 0; i < r.length; i++) {
if (r[i+1].get("S QTY") < i qtys[i]) abort();
queueSQL(InsertOrderLine, w_id, o _id, i ids[i], i qtys[il]);
queueSQL (UpdateStock, i qtys[i], i w ids[i], i ids[i]);

}

return (executeBatch() '= null);
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Why this Matters
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ABSTRACT

A new emerging class of parallel datsbase management systems
(DBMS) is designed to take advantage of the partitionable work-
loads of on-line transaction processing (OLTP) applications (23
20]. Transactions in these systems are optimized 10 execute 10 com-
pletion on a single node in a shared-nothing cluster without need-
ing 10 coordinate with other nodes or use expensive concurrency
control measures [18]. But some OLTP applications cannot be par-
titioned such that all of their transactions execute within a i
partition in this manner. These distributed transactions access data
not stored within their local partitions and subsequently require
more heavy-weight concurrency control protocols. Further difficul-
ties arise when the transaction’s execution properties. such as the
number of partitions it may need to access or whether it will abort
are not known beforehand. The DBMS could mitigate these per
formance issues if it is provided with additional information about
transactions. Thus, in this paper we present a Markov model-based
approach for automatically selecting which optimizations a DBMS
could use, namely (1) more efficient concurrency control schemes.
(2) intelligent scheduling. (3) reduced undo logging. and (4) spec-
ulative execution. To evaluate our techniques, we implemented our
models and integrated them into a parallel. main-memory OLTP
DBMS 1o show that we can improve the performance of applica-
tions with diverse workloads.

1. INTRODUCTION

Shared-nothing parallel databases are touted for their ability to
execute OLTP workloads with high throughput. In such systems.
data is spread across shared-nothing servers into disjoint segments
called partitions. OLTP workloads have three salient characteris
tics that make them amenable to this environment: (1) transactions
are short-lived (i.e., no user stalls), (2) transactions touch a small
subset of data using index look-ups (ie.. no full table scans or larg
distributed joins), and (3) transactions are repetitive (i.e., executing
the same queries with different inputs) [23]

Even with careful partitioning (7], achieving good performance
with this architecture requires significant tuning because of dis-
tributed transactions that access multiple partitions. Such trans-
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actions require the DBMS 1o either (1) block other transactions
from using each partition until that transaction finishes or (2) use
fine-grained locking with deadlock detection to execute transac
tions concurrently [18]. Ineither strategy, the DBMS may alsoneed
1o maintain an undo buffer in case the transaction aborts. Avoiding
such onerous concurrency control is important, since it has been
shown to be approximately 30% of the CPU overhead for OLTP
workloads in traditional databases [ 14]. Todo so, however. uires
have additional information about transactions be-
fore they start. For example. if the DBMS knows that a transaction
only needs to access data at one partition, then that transaction can
be redirected to the machine with that data and executed without
currency control schemes [2:
actical, however, to require users o explicitly inform
the DBMS how individual transactions are going 10 behave.
is especially true for complex applications where a change
database’s configuration, such as its partitioning schy
transactions” execution properties. Hence, in this paper we present
anovel method to automatically select which optimizations the DB-
MS can apply to transactions at runtime using Markov models. A
Markov model is a probabilistic model that. given the current state
of a transaction (e.g., which query it just executed), captures the
probability distribution of what actions that transaction will pe
form in the future. Based on this prediction, the DBMS can then
enable the proper optimizations. Our approach has minimal ovel
head, and thus it can be used on-line to observe requests to make im-
mediate predictions on transaction behavior without additional in-
formation from the user. We assume that the benefit outweighs the
cost when the prediction is wrong. This paper is focused on stored
procedure-based transactions, which have four properties that can
be exploited if they are known in advance: (1) how much data
is accessed on each node. (2) what partitions will the transaction
read/write, (3) whether the transaction could abort, and (4) when
the transaction will be finished with a partition
We begin with an overview of the optimizations used to improve
the throughput of OLTP workloads. We then describe our primary
contribution: representing transactions as Markov models in a way
that allows a DBMS to decide which of these optimizations to em-
ploy based on the most likely behavior of a transaction. Next, we
present Houdini, an on-line framework that uses these models to
generate predictions about transactions before they start. We have
integrated this framework into the H-Store system [2] and measure
its ability 1o optimize three OLTP benchmarks. The results from
these experiments demonstrate that our models select the proper
optimizations for 93% of transactions and improve the throughput
of the system by 41% on average with an overhead of 5% of Uk
total transaction execution time. Although our work is described in
the context of H-Store, it is applicable to similar OLTP systems.
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Execute txn at the best partition.
Only lock the partitions needed.

Disable undo logging if not needed.
Speculatively commit transactions.




Estimate initial path.
Update as transaction executes.

Recompute if workload changes.
Partition for better accuracy.
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Future work

class NewOrder extends StoredProcedure {

Query GetWarehouse “"SELECT * FROM WAREHOUSE WHERE W ID = ?";
Query CheckStock "SELECT S _QTY FROM STOCK
WHERE S W ID = ? AND S I ID = ?";
Query InsertOrder "INSERT INTO ORDERS VALUES (?,7?)";
Query InsertOrdLine "INSERT INTO ORDER LINE VALUES (?,7?,7?,7)";

Query UpdateStock = "UPDATE STOCK SET S QTY = S QTY - ?
WHERE S W ID = ? AND S I ID = ?";

int run(int w id, int i ids[], int i w ids[], int i gdlys
queueSQL (GetWarehouse, w_id);
for (int i = 0; i < i ids.length; i++)

queueSQL (CheckStock, i w ids[i], i ids[i]);

Result r[] = executeBatch();

int o id = r[0].get("W NEXT 0 ID") + 1;

queueSQL (InsertOrder, w_id, o_id);

for (int 1 = 0; i < r.length; i++) {
if (r[i+1].get("S QTY") < i qtys[i]) abort();
queueSQL(InsertOrderLine, w_id, o id, i ids[i], i qtys[i]);
queueSQL (UpdateStock, i qtys[i], i w ids[i], i _ids[i]);

}

return (executeBatch() != null);
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