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Databases are Great 
  

 Developer ease via ACID 

  
 Turing Award winning great 



But they are Rigid and Complex 



Growth… 
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Average Millions of Active Users  Rapid growth of some web services led to 
design of new “web-scale” databases…  



Rise of NoSQL 
 Scaling is needed 
 

 Chisel away at functionality  
◦ No transactions 
◦ No secondary indexes 
◦ Minimal recovery 
◦ Mixed Consistency 

 

 Not always suitable… 



 
Workloads Fluctuate 
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Peak Provisioning 
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Peak Provisioning isn’t Perfect 
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Growth is not always sustained 
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Need Elasticity 
ELASTICITY > SCALABILITY 



The Promise of Elasticity 
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Primary use-cases for elasticity 
 Database-as-a-Service with elastic placement of non-
correlated tenants, often low utilization per tenant. 
  
 High-throughput transactional systems (OLTP) 



No Need to Weaken 
the Database! 



High Throughput = Main Memory 
 Cost per GB for RAM is dropping. 

  

 Network memory is faster than local disk. 
  

 Much faster than disk based DBs. 



Approaches for “NewSQL” main-
memory* 
 Highly concurrent, latch-free data structures 
  
 Partitioning into single-threaded executors 
  

  

 *Excuse the generalization  
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Database Partitioning 
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The Problem: Workload Skew 
 Many OLTP applications suffer from variable load and high skew:  

Extreme Skew: 40-60% of NYSE trading volume is on 40 individual stocks 

Time Variation: Load “follows the sun” 

Seasonal Variation: Ski resorts have high load in the winter months 

Load Spikes: First and last 10 minutes of trading day have 10X the average volume 

Hockey Stick Effect: A new application goes “viral” 

  



High Skew 

Low Skew 

No Skew Uniform data access 

2/3 of queries access top 1/3 
of data 

Few very hot items 

The Problem: Workload Skew 



The Problem: Workload Skew 
 High skew increases latency by 10X and decreases throughput by 4X 

 Partitioned shared-nothing systems are especially susceptible 



The Problem: Workload Skew 
 Possible solutions: 
 
oProvision resources for peak load (Very expensive and brittle!) 

 
oLimit load on system (Poor performance!) 

 
oEnable system to elastically scale in or out to dynamically adapt to changes in load 
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Load Balancing 
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Two-Tiered Partitioning 
What if only a few specific tuples are very hot? Deal with them separately! 

Two tiers: 
1. Individual hot tuples, mapped explicitly to partitions 
2. Large blocks of colder tuples, hash- or range-partitioned at coarse granularity 

Possible implementations: 
o Fine-grained range partitioning 
o Consistent hashing with virtual nodes 
o Lookup table combined with any standard partitioning scheme 

Existing systems are “one-tiered” and partition data only at course granularity 
o Unable to handle cases of extreme skew 

  



E-Store 
End-to-end system which extends H-Store (a distributed, shared-nothing, main memory DBMS) 
with automatic, adaptive, two-tiered elastic partitioning 
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E-Monitor: High-Level Monitoring 
High level system statistics collected every ~1 minute 

o CPU indicates system load, used to determine whether to add or remove nodes, or re-
shuffle the data 
 

o Accurate in H-Store since partition executors are pinned to specific cores 
 

o Cheap to collect 
 

o When a load imbalance (or overload/underload) is detected, detailed monitoring is 
triggered 



E-Monitor: Tuple-Level Monitoring 
Tuple-level statistics collected in case of load imbalance 

o Finds the top 1% of tuples accessed per partition (read or written) during a 10 second window 
o Finds total access count per block of cold tuples 

 
Can be used to determine workload distribution, using tuple access count as a proxy for system 
load 

o Reasonable assumption for main-memory DBMS w/ OLTP workload 

 

Minor performance degradation during collection 

 



E-Monitor: Tuple-Level Monitoring 
Sample output 

 



E-Planner 
Given current partitioning of data, system statistics and hot tuples/partitions from E-Monitor, E-
Planner determines:  

o Whether to add or remove nodes 
o How to balance load 

Optimization problem: minimize data movement (migration is not free) while balancing system 
load. 

We tested five different data placement algorithms: 
o One-tiered bin packing (ILP – computationally intensive!) 
o Two-tiered bin packing (ILP – computationally intensive!) 
o First Fit (global repartitioning to balance load) 
o Greedy (only move hot tuples) 
o Greedy Extended (move hot tuples first, then cold blocks until load is balanced) 



E-Planner: Greedy Extended 
Algorithm 

Current YCSB partition  
plan 
 
"usertable": { 
 
  0: [0-100000)  
  1: [100000-200000) 
  2: [200000-300000) 
 
} 

Hot  
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… … 
New YCSB partition  
plan 
 
"usertable": { 
 
  0: [1000-100000)  
  1: [1-2),[100000-200000) 
  2: [200000-300000),[0-1), 
     [2-1000) 
 
} 

? 



E-Planner: Greedy Extended 
Algorithm 
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E-Planner: Greedy Extended 
Algorithm 
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E-Planner: Greedy Extended 
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E-Planner: Other Heuristic algorithms 
Greedy 

o Like Greedy Extended, but the algorithm stops after all hot tuples have been moved 
o If there are not many hot tuples (e.g. low skew), may not sufficiently balance the workload 

 
First Fit 

o First packs hot tuples onto partitions, filling one partition at a time 
o Then packs blocks of cold tuples, filling the remaining partitions one at a time 
o Results in a balanced workload, but does not attempt to limit the amount of data movement 



E-Planner: Optimal Algorithms 
Two-Tiered Bin Packer 

o Uses Integer Linear Programming (ILP) to optimally pack hot tuples and cold blocks onto partitions 
o Constraints: each tuple/block must be assigned to exactly one partition, and each partition must 

have total load less than the average + 5% 
o Optimization Goal: minimize the amount of data moved in order the satisfy the constraints 

 

One-Tiered Bin Packer 
o Like Two-Tiered Bin Packer, but can only pack blocks of tuples, not individual tuples 
o Both are computationally intensive, but show one- and two-tiered approaches in best light 



Squall 
Given plan from E-Planner, Squall physically moves the data while the system is live 

 

For immediate benefit, moves data from hottest partitions to coldest partitions first 

 

More on this in a bit… 

  



Results – Two-Tiered V. One-Tiered 
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Results – Heuristic Planners 
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But What About… 
Distributed Transactions??? 

 

Current E-Store does not take them into account when planning data movement 

 

Ok when most transactions access a single partitioning key – tends to be the case for “tree 
schemas” such as YCSB, Voter, and TPC-C 

 

E-Store++ will address the general case 
o More later… 



Squall 
FINE-GRAINED LIVE RECONFIGURATION FOR 
PARTITIONED MAIN MEMORY DATABASES 



The Problem 
 Need to migrate tuples between partitions to reflect the updated partitioning. 

  

 Would like to do this without bringing the system offline: 
◦ Live Reconfiguration 

 

 Similar to live migration of an entire database between servers. 
  



Existing Solutions are Not Ideal 
 Predicated on disk based solutions with traditional concurrency and recovery. 

  

 Zephyr:  Relies on concurrency (2PL) and disk pages. 
 

 ProRea: Relies on concurrency (SI and OCC) and disk pages. 
 

 Albatross: Relies on replication and shared disk storage. Also introduces strain on source. 
 

 Slacker: Replication middleware based. 



Not Your Parent’s Migration 
 More than a single source and destination 
◦ Want lightweight coordination 

  

 Single threaded execution model 
◦ Either doing work or migration 

  

 Presence of distributed transactions  
and replication 

  

Migrating 2 warehouses in TPC-C 
In E-Store with a Zephyr like migration 



Squall 
Given plan from E-Planner, Squall physically moves the data while the system is live 

 
Conforms to H-Store single-threaded execution model 

o While data is moving, transactions are blocked 
 

To avoid performance degradation, Squall moves small chunks of data at a time, interleaved with 
regular transaction execution 



Reconfiguration 
(New Plan, Leader ID) 

Pull 
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Squall Steps  
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Outgoing: 2 
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1. Identify migrating data 
2. Live reactive pulls for required data 
3. Periodic lazy/async pulls for large chunks 



Keys to Performance 
 Redirect or pull only if needed. 

  
Properly size reconfiguration granule. 
 

 Split large reconfigurations to limit demands on  
single partition. 
 

 Tune what gets pulled.  

  
Sometimes pull a little extra. 

  

Migrating 2 warehouses in TPC-C 
In E-Store with a Zephyr like migration 



Redirect and Pull 
Only When Needed 



Data Migration 
 Query arrives, must be trapped to check if data is potentially moving. Check key map, then 
ranges list. 

  

 If either source or destination partition is local check their map, keep local if possible. 

  

 If neither partition is local, forward to destination. 

 

 If data is not moving, process transaction.  



Trap for Data Movement 
 If txn requires incoming data, block execution and schedule data pull. 
◦ Can only block dependent nodes in query plan 
◦ Upon receipt mark and dirty tracking structures, and unblock. 

  

 If txn requires lost data, restart as distributed transaction or forward request. 



Data Pull Requests 
 Live data pulls are scheduled at destination as high priority transactions. 

  

 Current transaction finishes before extraction. 

  

 Timeout detection is needed. 



Chunk Data for 
Asynchronous Pulls 



Why Chunk? 
 Unknown amount of data when not partitioned by clustered index. 

  Customers by W_ID in TPC-C 

  

 Time spent extracting, is time not spent on TXNS. 

  

 Want a mechanism to support partial extraction while maintaining consistency. 



Async Pulls 
 Periodically pull chunks of cold data 

  

 These pulls are answered lazy 

  

 Execution is interwoven with extracting and sending data (dirty the range though!) 



Mitigating Async Pulls 

Partition 1 

Txn Queue 

Idle Clock 

Partition 2 

Txn Queue 

Pull Async Data 



New Transactions Take Precedent 

Partition 1 

Txn Queue 

Partition 2 

Txn Queue 



Extract up to Chunk Limit 

Txn Queue 

Partition 2 

Txn Queue 

Partition 1 

Important to note data 
is partially migrated! 



Repeat Until Complete 

Partition 1 

Txn Queue 

Partition 2 

Txn Queue 

Repeat chunking until complete. 
New transactions still take 
precedent 



Sizing Chunks 
 Static analysis to set chunk sizes,  future work to dynamically set sizing and scheduling. 

 Impact on chunk sizes on a 10% reconfiguration during a YCSB workload. 



Space Async Pulls 
 Introduce delay at destination between new 
async pull requests. 

  

 Impact on chunk sizes on a 10% 
reconfiguration during a YCSB workload with 
8mb chunk size. 

  



Splitting Reconfigurations 
 Split by pairs of source and destination 

 Example: partition 1 is migrating W_ID 2,3 to partitions 3 and 7, execute as two reconfigurations. 

 If migrating large objects, split them and use distributed transactions. 

  



Splitting into Sub-Plans 
 Set a cap on sub-plan splits, and split on pairs 
and ability to decompose migrating objects 



All about trade-offs 
 Trading off time to complete migration and performance degradation. 

  

 Future work to consider automating this trade-off based on service level objectives. 



Results Highlight 

TPC-C load balancing hotspot warehouses 



YCSB Latency 

YCSB cluster consolidation 4 to 3 nodes YCSB data shuffle 10% pairwise 



I Fell Asleep… What Happened 
 Skew happens, two-tiered partitioning for greedy load-balancing and elastic 
growth helps 

  

 If you have work or migrate, be careful to break up the migrations and don’t be 
too needy on any one partition. 

  

 We are thinking hard about skewed workloads that aren’t trivial to partition. 

  

 Questions? 
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