Beyond Main Memory

Anti-Caching in Main Memory Database Systems

Justin DeBrabant
Brown University

am BROWN

EE] [
q I Database Group

Talk Overview

1. anti-caching architecture

» larger than memory datasets in main
memory DBMS

2. anti-caching + persistent memory
» ditching the disk (finally!)

am BROWN

EE] [
q I Database Group

A bit of history...

1974 — System R

» query optimization

> recovery

» transaction serialization

» allows concurrent execution of
transactions

» lots of locks

am BROWN

EE] [
q I Database Group

Application

Change is Good

Price per GB of DRAM
~

19701973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012

source: http://www.archivebuilders.com/whitepapers/22045p.pdf

q I Database Group

Great, that’s what the buffer

pool is for...right?

am BROWN

EE] [
q I Database Group

More Memory - Higher Throughput?

» all data resides in memory (i.e. in buffer
pool)
» No disk stalls
» must still...
» maintain buffer pool
» lock/latch data
» maintain ARIES-style recovery logs

» question: What is the overhead of all
these things?

aw BROWN

q I Database Group

nm
@

Buffer Pool

26% ¥ Locking

Recovery

12% Real Work

OLTP Through the Looking Glass,

and What We Found There
SIGMOD ‘08

B
D

ROAA

atabase Group

Ok, no buffer pool, how about

a distributed cache?

am BROWN

EE] [
q I Database Group

Distributed Caches

> e.g. memcached
» just in-memory key-value pair
» no inherent persistence

» application programmer must
maintain consistency

» or not!

am BROWN

EE] [
q I Database Group

50, we need a hybrid of these

two architectures.

am BROWN

EE] [
q I Database Group

-Store

Parallel Main Memory
Transaction Processing System

H-Store: A High-Performance, Distributed

| Main Memory Transaction Processing System
VLDB 2008.

&5 BROWN "

El [m]
q I Database Group

H-Store Architecture

»partitioned, shared-nothing

» data is sharded across nodes

»single-threaded main memory
execution

» no need for locks and latches

= BROWN

q I Database Group

H-Store Architecture (cont’d)

»stored procedures

» no ad hoc queries in OLTP
» command logging

»recovery

» snapshots + command log

am BROWN

EE] [
q I Database Group

. Procedure Name
CI ient Input Parameters

Application

“*H-Store Node

Txn Coordinator
Core

Y
Partition
Data

Y >
Partition
Data

IR e N N N |

atabase Group

H-Store Assumptions
1. OLTP workload

» short-lived transactions that touch only a few
records at a time

2. mostly single-site transactions

» distributed transactions need multi-node
coordination

3. data fits in memory
» virtual memory is bad!

am BROWN

EE] [
q I Database Group

YCSB, update-heavy, data < memory

W=l H-Store ¢=¢ MySQL @=@ MySQL+Memcached

160000M

©
c
o
o
(]
(%)
—
(9
(o
0
c
(]
=
(S
©
(2]
c
©
—
-

q I Database Group

Assumptions: Revisited

1. OLTP workload

» “One Size Fits All”;: An Idea Whose Time Has

Come and Gone
» ICDE ‘05

» The End of An Architectural Era: (lts Time
for A Complete Rewrite)
» VLDB ‘07

am BROWN

EE] [
q I Database Group

Assumptions: Revisited

2. mostly single-site transactions

» Skew-Aware Automatic Database

Partitioning In Shared-Nothing, Parallel

OLTP Systems
» SIGMOD 12

» On Predictive Modeling For Optimizing

Transaction Execution in Parallel OLTP
Systems
» VLDB ‘11

am BROWN

EE] [
q I Database Group

Assumptions: Revisited

sw BROWN

El [m
q I Database Group

Workload Skew Exists!

»hot data in memory
»cold data to disk

»goals

» maintain transactional consistency

» avoid blocking
sa BROWN

q I Database Group

Anti-Caching

Anti-Caching Phases

pevict
)pre-pass
»fetch

> merge

am BROWN

EE] [
q I Database Group

Evict

1. data > anti-cache threshold

2. dynamically construct anti-cache
blocks of coldest tuples

3. asynchronously write to disk

ROAA

atabase Group

Pre-Pass

. a transaction enters pre-pass when
evicted data is accessed

. continues execution, creating list of

evicted blocks
. abort, queue blocks to be fetched

am BROWN

EE] [
q I Database Group

Fetch

1. data is fetched asynchronously
from disk

» avoids blocking

2. copied into merge buffer

am BROWN

EE] [
q I Database Group

Merge

previously aborted transaction is
restarted

moves data from merge buffer to
normal table

. transaction executes normally

am BROWN

EE] [
q I Database Group

Multiple Restarts

» in-memory data for restarted transaction
is relatively cold

» mark tuples in pre-pass phase as hot

» data dependencies with evicted tuples
» mark recently merged tuples as hot

» larger-than-memory queries still an issue
» not in OLTP

aw BROWN

q I Database Group

Other Design Points

» LRU chain
» embedded in tuple headers > 0(17) updates

» EvictedTable

» stores <tuple id, block id> pairs for evicted
tuples

» anti-cache
» BerkeleyDB

aw BROWN

q I Database Group

Application

- dl

Primary Storage

33341

Anti-Cache

Sounds like swapping...

am BROWN

EE] [
q I Database Group

Anti-Caching vs. Swapping

» fine-grained eviction

»blocks constructed dynamically

» non-blocking fetches

»remove disk from critical path

am BROWN

EE] [
q I Database Group

Sounds like caching...

am BROWN

EE] [
q I Database Group

Anti-Caching vs. Caching

» data exists in exactly one location

» caching architectures have multiple
copies, must maintain consistency

» data is moved, not copied

» goal is data size, not throughput

am BROWN

EE] [
q I Database Group

Benchmarking
»YCSB

» Zipfian skew

»data > memory

»read/write mix
»MySQL, MySQL + memcached
am BROWN

q I Database Group

YCSB, read-only, data 8X memory

el anti-cache MySQL MySQL + memcached

100000

Disk Saturation
80000 /

60000

)
=
Q.

i -
o0
-
@)
L

L=
)

40000

20000

0
1.25 1 0.75

1.5
= BROWN workload skew

Database Group

Conclusions

»8-17X improvement for skewed
workloads at 8X memory
» avoids blocking for disk
» fine-grained eviction

»disk becomes the bottleneck

= BROWN

q I Database Group

Anti-Caching: A New Approach to
Database Management System Architecture

Justin DeBrabant
Brown University

Andrew Pavlo
Brown University MIT CSAIL

Stephen Tu

debrabant@cs.brown.edu pavlo@cs.brown.edu stephentu@csail.mit.edu

Michael Stonebraker
M AlL

stonebraker@csail.mit.edu

ABSTRACT

‘The traditional wisdom for building di d relational database
‘management systems (DBMS) is o organize data in heavily-encoded
blocks stored on disk, with a main memory bloc e. In order to
improve performance given high disk latency. these system

ot readed architecure with dynamic record-level !mkm«' hat
allows multiple transactions to access the database at the same time.
Previous research has shown that this results in substantial over-
head for on-line transaction processing (OLTP) applications [15]

‘The next generation DBMSS seck to overcome these limitations
with architecture based on main memory resident data. To over-
come the restriction that all data fit in main memory, we propose
a new technique, called anti-caching, where cold data is moved
to disk in a transactionally-safe manner as the database grows in
size. Because data initially resides in memory, an anti-caching ar-
chitecture reverses the traditional storage hierarchy of disk-based
systems. Main memory is now the primary storage device.

We implemented a prototype of our anti-caching proposal in a
high-performance, main memory OLTP DBMS and performed a
series of experiments across a range of database sizes, workload
skews, and read/write mixes. We compared its performance with an
open-source, disk-based DBMS optionally fronied by a distributed
main memory cache. Our results show that for higher skewed
‘workloads the anti-caching architecture has a perl ance advan-
tage over either of the other architectures tested of up to 9x for a
data size 8 larger than memory

1. INTRODUCTION
Historically, the internal architecture of DBMSs has been pred-
icated on the storage and management of data in heavily-encoded
disk blocks. In most systems, there is a header at the begmmm of
h disk bloc} tate certain operation:
e\nmple i heades suilly conain a lne b1 at th ot of
the block to support indirection to tuples. This allows the DBMS to
reorganize blocks without needing 1o change index pointers. When
a disk block is read into main memory. it must then be translated
into main memory format
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear his notice and the full citation on the first page. To copy otherwise, to
republish, 10 post on servers or toredistribute o lsts, requires prior specific
rmission and/or a fee. Articles from this volume were invited to present
theirresults at The 39th International Conference on Very Large Data Bases,
August 26th - 315t 2013, Riva del Garda, Trento, laly.
Proceedings of the VLDB Endowmens, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14...$ 10.00.

Stan Zdonik
Brown University
sbz@cs.brown.edu

DBMSs invariably maintain a buffer pool of blocks in main mem-
ory for faster access. When an executing query attempts to read a
disk block, the DBMS first checks to see whether the block already
exists in this buffer pool. If not, a block is evicted to make room
for the needed one. There is substantial overhead to managing the
buffer pool, since blocks have to be pinned in main memory and the
system must maintain an eviction order policy (e.g., least recently
used). As noted in [15], when all data fits in main memory, the
cost of maintaining a buffer pool is nearly one-third of all the CPU
cycles used by the DBMS,

The expense of managing disk-resident data has fostered a class
of new DBMSs that put the entire database in main memory and
thus have no buffer pool [11]. TimesTen was an early proponent of
this approach [31], and more recent examples include H-Store [2,
1\1 Mem\QL [x] and RAMCloud [25]. H-Store (and its com

mercial ver IDB [4]) performs significantly better than disk-
bised DS+ on standard OLTP benchmarks [29] because of this
main memory orientation, as well as from avoiding the overhead of
concurrency control and heavy-weight data logging [22!

The fundamental problem with main memory DBMSs, however,
i that this improved performance is only achievable when the database
is smaller than the amount of physical memory available in the
tem. If the database does not fit in memory, then the operating
system will start to page virtual memory, and main memory ac-
cesses will cause page faults. Because page faults are transparent
to the user, in this case the main memory DBMS, the execution of
transactions is stalled while the page is fetched from disk. This is a
significant problem in a DBMS, like H-Store, that executes tran:
tions serially without the use of heavyweight locking and latching.
Because of this, all main memory DBMSs warm users not 1o ex-
ceed the amount of real memory [S]. If memory is exceeded (or
if it might be at some point in the future), then a user must either
(1) provision new hardware and migrate their database to a larger
cluster, or (2) fall back to a traditional disk-based system, with its
inherent performance problems.

One widely adopted performance enhancer is to use a main mem-
ory distributed cache, such as Memcached [14], in front of a disk-
based DBMS. Under this twotier architecture, the application first
Tooks in the cache for the tuple of interest. If this wple s not in the
cache, then the application excutes a query in the DBMS to fetch
the desired data. Once the application receives this data from the
DBMS, it u'vda(e\ the cache for fast access in the future. Whenever
a tuple is modified in the database, the application must invalidate
its cache entry so that the next time it is accessed the application
will retrieve the current ve from the DBMS. Many notable web

Anti-Caching: A New Approach to
t System Architecture

Database Managemen
VLDB’13.

q I Database Group

q I Database Group

Memory Latencies (cycles)

»SRAM: 1-30

»DRAM: 100-300

»flash: 25,000-2,000,000
disk: 5,000,000+

BROWN

EE]E
q [Databas

NVM

»non-volatile
»random-access

»high write endurance

» except flash

»byte-addressable

» except flash
so BROWN

q I Database Group

The Arms Race
» FeRAM

» high write endurance

» MRAM
» DRAM-like latency

» PCM (PRAM)
» DRAM-like capacity

am BROWN

EE] [
q I Database Group

;g Bl
o) Mmm mmm
5 mmm £35
g z88 L¢3
4 M escocacmocomoodboc H_._.h |l | = - cococooooo| loococococoooood booooooocooooacd
25 1N
L m m ._..__..r
\ g A
\ ba T e e
oy e L
\ &
s \
,..__.. m m, ___‘ = \
SN » ; ‘g
—_— QFE .._.|.... I Y
e | R A __._.__..__ = n Fa
= - i &
- - e .|-| _—— -
i
3
... mm W W
@m, & =
2 |\ .

1m

100y

10p

=
-

(s) sLup syIm

iy

10M

10G 100G

1G

Memory capacity (bit)

1M

Courtesy: Motoyuki Ooishi

NVM Emulation

» goal: provide product-independent
analysis

» test wide range of latency profiles
» automatically add specified latency
» built by collaborators at Intel

am BROWN

EE] [
q I Database Group

H-Store + NVM Architectures

1. Anti-Cache to H-Store

+ fully utilizes memory hierarchy
- added memory overhead

2. H-Store on NVM

+ no anti-cache overhead
- wear-leveling necessary

am BROWN

q I Database Group

Architecture 1

Application

Architecture 2

Application

Architecture 1, YCSB, read-only, data 8X memory

160000 | n

2X latency 4X latency 16X latency

140000

120000

100000

80000

60000

d
-
Q.

<
(e]0)
-
@)
p

i e
d

40000

20000

0
1

1.5 .
Eﬁ‘ﬁg BROWN workload skew
D

q I Database Group

Work in Progress

»implementation of Architecture 2

» also in H-Store

»further benchmarking

» YCSB, TPC-C, possibly others
» Architecture 1 vs. Architecture 2

» paper in preparation

= BROWN

q I Database Group

Conclusions

» hardware has changed

» anti-caching to disk has 18-17X
speedup over disk-based architecture

» better utilization of available memory

» next-generation persistent memories
extend the benefits of anti-caching
beyond skewed workloads

= BROWN

q I Database Group

Collaborators

/\

Stan Andy
Zdonik Pavio
(Brown) (CMU)

- -
p -~
e P p

Mike
Stonebraker
(MIT)

Stephen
u

(MIT)

Jo
Arulraj
(CMU)

i Il)%ROWN

tabase Group

Questions?

debrabant@cs.brown.edu

mm BROWN
9E D

atabase Group

