
Beyond Main Memory
Anti-Caching in Main Memory Database Systems

Justin DeBrabant
 Brown University

Talk Overview

1.  anti-caching architecture
‣  larger than memory datasets in main

memory DBMS

2.  anti-caching + persistent memory
‣  ditching the disk (finally!)

A bit of history…

1974 – System R
▸ query optimization
▸ recovery

▸ transaction serialization
‣ allows concurrent execution of

transactions
‣ lots of locks

Change is Good

1.E+00	

1.E+02	

1.E+04	

1.E+06	

1.E+08	

1.E+10	

1970	 1973	 1976	 1979	 1982	 1985	 1988	 1991	 1994	 1997	 2000	 2003	 2006	 2009	 2012	

U
SD

	 ($
)	

source: http://www.archivebuilders.com/whitepapers/22045p.pdf

Price per GB of DRAM

Great, that’s what the buffer
pool is for...right?

More Memory Higher Throughput?

▸ all data resides in memory (i.e. in buffer
pool)
‣  No disk stalls

▸ must still…
‣ maintain buffer pool
‣ lock/latch data
‣ maintain ARIES-style recovery logs

▸ question: What is the overhead of all
these things?

OLTP Through the Looking Glass,
and What We Found There
SIGMOD ‘08

31%	

31%	
26%	

12%	

Buffer Pool

Locking

Recovery

Real Work

Ok, no buffer pool, how about
a distributed cache?

Distributed Caches
▸ e.g. memcached
▸ just in-memory key-value pair

▸ no inherent persistence
▸ application programmer must

maintain consistency
‣ or not!

So, we need a hybrid of these
two architectures.

Parallel Main Memory
Transaction Processing System

H-Store: A High-Performance, Distributed
Main Memory Transaction Processing System
VLDB 2008.

H-Store: A High-Performance, Distributed Main Memory

Transaction Processing System

Robert Kallman
Hideaki Kimura

Jonathan Natkins
Andrew Pavlo

Alexander Rasin
Stanley Zdonik
Brown University

{rkallman, hkimura,

jnatkins, pavlo, alexr,

sbz}@cs.brown.edu

Evan P. C. Jones
Samuel Madden

Michael Stonebraker
Yang Zhang

Massachusetts Institute of

Technology

{evanj, madden,

stonebraker,

yang}@csail.mit.edu

John Hugg
Vertica Inc.

jhugg@vertica.com

Daniel J. Abadi
Yale University

dna@cs.yale.edu

ABSTRACT

Our previous work has shown that architectural and appli-
cation shifts have resulted in modern OLTP databases in-
creasingly falling short of optimal performance [10]. In par-
ticular, the availability of multiple-cores, the abundance of
main memory, the lack of user stalls, and the dominant use
of stored procedures are factors that portend a clean-slate
redesign of RDBMSs. This previous work showed that such
a redesign has the potential to outperform legacy OLTP
databases by a significant factor. These results, however,
were obtained using a bare-bones prototype that was devel-
oped just to demonstrate the potential of such a system. We
have since set out to design a more complete execution plat-
form, and to implement some of the ideas presented in the
original paper. Our demonstration presented here provides
insight on the development of a distributed main memory
OLTP database and allows for the further study of the chal-
lenges inherent in this operating environment.

1. INTRODUCTION

The use of specialized data engines has been shown to
outperform traditional or “one size fits all” database sys-
tems [8, 9]. Many of these traditional systems use a myriad
of architectural components inherited from the original Sys-
tem R database, regardless if the target application domain
actually needs such unwieldy techniques [1]. For example,
the workloads for on-line transaction processing (OLTP)
systems have particular properties, such as repetitive and
short-lived transaction executions, that are hindered by the
I/O performance of legacy RDBMS platforms. One obvious
strategy to mitigate this problem is to scale a system hor-
izontally by partitioning both the data and processing re-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

sponsibilities across multiple shared-nothing machines. Al-
though some RDBMS platforms now provide support for
this paradigm in their execution framework, research shows
that building a new OLTP system that is optimized from
its inception for a distributed environment is advantageous
over retrofitting an existing RDBMS [2].

Using a disk-oriented RDBMS is another key bottleneck
in OLTP databases. All but the very largest OLTP applica-
tions are able to fit their entire data set into the memory of
a modern shared-nothing cluster of server machines. There-
fore, disk-oriented storage and indexing structures are un-
necessary when the entire database is able to reside strictly
in memory. There are some main memory database systems
available today, but again many of these systems inherit the
architectural baggage of System R [6]. Other distributed
main memory databases have also focused on the migration
of legacy architectural features to this environment [4].

Our research is focused on developing H-Store, a next-
generation OLTP system that operates on a distributed clus-
ter of shared-nothing machines where the data resides en-
tirely in main memory. The system model is based on the
coordination of multiple single-threaded engines to provide
more efficient execution of OLTP transactions. An earlier
prototype of the H-Store system was shown to significantly
outperform a traditional, disk-based RDBMS installation
using a well-known OLTP benchmark [10, 11]. The results
from this previous work demonstrate that our ideas have
merit; we expand on this work and in this paper we present
a more full-featured version of the system that is able to
execute across multiple machines within a local area clus-
ter. With this new system, we are investigating interesting
aspects of this operating environment, including how to ex-
ploit non-trivial properties of transactions.

We begin in Section 2 by first providing an overview of
the internals of the H-Store system. The justification for
many of the design decisions for H-Store is found in ear-
lier work [10]. In Section 3 we then expand our previous
discussion on the kinds of transactions that are found in
OLTP systems and the desirable properties of an H-Store
database design. We conclude the paper in Section 4 by
describing the demonstration system that we developed to
explore these properties further and observe the execution
behavior of our system.

1496

H-Store Architecture

▸ partitioned, shared-nothing
‣ data is sharded across nodes

▸ single-threaded main memory
execution
‣ no need for locks and latches

H-Store Architecture (cont’d)
▸ stored procedures
‣ no ad hoc queries in OLTP
‣ command logging

▸ recovery
‣ snapshots + command log

!!!

"#$%&%&'(
)#%#

"#$%&%&'(
)#%#

+,-.%&'(/(0&(,*+,-.%&'(/*(0&(,

1+(/2''$3&(#%'$

24&,(%
5664&-#%&'(

7#&(
7,8'$9

2'$, 2'$,

!"#$%&'"%()*+%
,-.'/(!*"*+%/%"0

H-Store Assumptions
1. OLTP workload
‣ short-lived transactions that touch only a few

records at a time

2. mostly single-site transactions
‣ distributed transactions need multi-node

coordination

3. data fits in memory
‣  virtual memory is bad!

YCSB, update-heavy, data < memory

Assumptions: Revisited

1. OLTP workload
‣  “One Size Fits All”: An Idea Whose Time Has

Come and Gone
‣  ICDE ‘05

‣  The End of An Architectural Era: (Its Time
for A Complete Rewrite)
‣  VLDB ‘07

Assumptions: Revisited
2. mostly single-site transactions
‣  Skew-Aware Automatic Database

Partitioning In Shared-Nothing, Parallel
OLTP Systems
‣  SIGMOD ‘12

‣  On Predictive Modeling For Optimizing
Transaction Execution in Parallel OLTP
Systems
‣  VLDB ‘11

Assumptions: Revisited

<>

Workload Skew Exists!

▸ hot data in memory
▸ cold data to disk
▸ goals
‣ maintain transactional consistency
‣ avoid blocking

Anti-Caching

Anti-Caching Phases
▸ evict
▸ pre-pass
▸ fetch
▸ merge

Evict
1.  data > anti-cache threshold
2.  dynamically construct anti-cache

blocks of coldest tuples
3.  asynchronously write to disk

Pre-Pass

1.  a transaction enters pre-pass when
evicted data is accessed

2.  continues execution, creating list of
evicted blocks

3.  abort, queue blocks to be fetched

Fetch

1.  data is fetched asynchronously
from disk
‣ avoids blocking

2.  copied into merge buffer

Merge

1.  previously aborted transaction is
restarted

2.  moves data from merge buffer to
normal table

3.  transaction executes normally

Multiple Restarts
▸ in-memory data for restarted transaction

is relatively cold
‣ mark tuples in pre-pass phase as hot

▸ data dependencies with evicted tuples
‣ mark recently merged tuples as hot

▸ larger-than-memory queries still an issue
‣ not in OLTP

Other Design Points
▸ LRU chain
‣ embedded in tuple headers O(1) updates

▸ EvictedTable
‣ stores <tuple id, block id> pairs for evicted

tuples

▸ anti-cache
‣ BerkeleyDB

Sounds like swapping…

Anti-Caching vs. Swapping

▸  fine-grained eviction
‣ blocks constructed dynamically

▸  non-blocking fetches
‣ remove disk from critical path

Sounds like caching…

Anti-Caching vs. Caching
▸ data exists in exactly one location
‣ caching architectures have multiple

copies, must maintain consistency
‣ data is moved, not copied

▸ goal is data size, not throughput

Benchmarking
▸ YCSB
▸ Zipfian skew
▸ data > memory
▸ read/write mix
▸ MySQL, MySQL + memcached

YCSB, read-only, data 8X memory

0	

20000	

40000	

60000	

80000	

100000	

120000	

1.5	 1.25	 1	 0.75	 0.5	

th
ro
ug
hp

ut
	

workload	 skew	

anti-cache MySQL MySQL + memcached

Disk Saturation

Conclusions
▸ 8-17X improvement for skewed

workloads at 8X memory
‣ avoids blocking for disk

‣ fine-grained eviction

▸ disk becomes the bottleneck

Anti-Caching: A New Approach to
Database Management System Architecture
VLDB’13.

Anti-Caching: A New Approach to
Database Management System Architecture

Justin DeBrabant Andrew Pavlo Stephen Tu
Brown University Brown University MIT CSAIL

debrabant@cs.brown.edu pavlo@cs.brown.edu stephentu@csail.mit.edu

Michael Stonebraker Stan Zdonik
MIT CSAIL Brown University

stonebraker@csail.mit.edu sbz@cs.brown.edu

ABSTRACT

The traditional wisdom for building disk-based relational database
management systems (DBMS) is to organize data in heavily-encoded
blocks stored on disk, with a main memory block cache. In order to
improve performance given high disk latency, these systems use a
multi-threaded architecture with dynamic record-level locking that
allows multiple transactions to access the database at the same time.
Previous research has shown that this results in substantial over-
head for on-line transaction processing (OLTP) applications [15].

The next generation DBMSs seek to overcome these limitations
with architecture based on main memory resident data. To over-
come the restriction that all data fit in main memory, we propose
a new technique, called anti-caching, where cold data is moved
to disk in a transactionally-safe manner as the database grows in
size. Because data initially resides in memory, an anti-caching ar-
chitecture reverses the traditional storage hierarchy of disk-based
systems. Main memory is now the primary storage device.

We implemented a prototype of our anti-caching proposal in a
high-performance, main memory OLTP DBMS and performed a
series of experiments across a range of database sizes, workload
skews, and read/write mixes. We compared its performance with an
open-source, disk-based DBMS optionally fronted by a distributed
main memory cache. Our results show that for higher skewed
workloads the anti-caching architecture has a performance advan-
tage over either of the other architectures tested of up to 9× for a
data size 8× larger than memory.

1. INTRODUCTION

Historically, the internal architecture of DBMSs has been pred-
icated on the storage and management of data in heavily-encoded
disk blocks. In most systems, there is a header at the beginning of
each disk block to facilitate certain operations in the system. For
example, this header usually contains a “line table” at the front of
the block to support indirection to tuples. This allows the DBMS to
reorganize blocks without needing to change index pointers. When
a disk block is read into main memory, it must then be translated
into main memory format.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 31st 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

DBMSs invariably maintain a buffer pool of blocks in main mem-
ory for faster access. When an executing query attempts to read a
disk block, the DBMS first checks to see whether the block already
exists in this buffer pool. If not, a block is evicted to make room
for the needed one. There is substantial overhead to managing the
buffer pool, since blocks have to be pinned in main memory and the
system must maintain an eviction order policy (e.g., least recently
used). As noted in [15], when all data fits in main memory, the
cost of maintaining a buffer pool is nearly one-third of all the CPU
cycles used by the DBMS.

The expense of managing disk-resident data has fostered a class
of new DBMSs that put the entire database in main memory and
thus have no buffer pool [11]. TimesTen was an early proponent of
this approach [31], and more recent examples include H-Store [2,
18], MemSQL [3], and RAMCloud [25]. H-Store (and its com-
mercial version VoltDB [4]) performs significantly better than disk-
based DBMSs on standard OLTP benchmarks [29] because of this
main memory orientation, as well as from avoiding the overhead of
concurrency control and heavy-weight data logging [22].

The fundamental problem with main memory DBMSs, however,
is that this improved performance is only achievable when the database
is smaller than the amount of physical memory available in the sys-
tem. If the database does not fit in memory, then the operating
system will start to page virtual memory, and main memory ac-
cesses will cause page faults. Because page faults are transparent
to the user, in this case the main memory DBMS, the execution of
transactions is stalled while the page is fetched from disk. This is a
significant problem in a DBMS, like H-Store, that executes transac-
tions serially without the use of heavyweight locking and latching.
Because of this, all main memory DBMSs warn users not to ex-
ceed the amount of real memory [5]. If memory is exceeded (or
if it might be at some point in the future), then a user must either
(1) provision new hardware and migrate their database to a larger
cluster, or (2) fall back to a traditional disk-based system, with its
inherent performance problems.

One widely adopted performance enhancer is to use a main mem-
ory distributed cache, such as Memcached [14], in front of a disk-
based DBMS. Under this two-tier architecture, the application first
looks in the cache for the tuple of interest. If this tuple is not in the
cache, then the application executes a query in the DBMS to fetch
the desired data. Once the application receives this data from the
DBMS, it updates the cache for fast access in the future. Whenever
a tuple is modified in the database, the application must invalidate
its cache entry so that the next time it is accessed the application
will retrieve the current version from the DBMS. Many notable web

NVM

Memory Latencies (cycles)

▸ SRAM: 1-30
▸ DRAM: 100-300
▸ flash: 25,000-2,000,000
▸ disk: 5,000,000+

NVM
▸ non-volatile
▸ random-access
▸ high write endurance
‣ except flash
▸ byte-addressable
‣ except flash

The Arms Race
▸ FeRAM
‣ high write endurance

▸ MRAM
‣ DRAM-like latency

▸ PCM (PRAM)
‣ DRAM-like capacity

!

"#$%&'()*+,-./)0

8

Courtesy: Motoyuki Ooishi

FeRAM, MRAM, or
PCRAM, combines
the advantages of
SRAM, DRAM, and
flash.

Good opportunity
to rethink the
memory hierarchy
design.

NVM Emulation

▸ goal: provide product-independent
analysis
▸ test wide range of latency profiles

▸ automatically add specified latency
▸ built by collaborators at Intel

H-Store + NVM Architectures

1. Anti-Cache to H-Store
+ fully utilizes memory hierarchy
- added memory overhead

2. H-Store on NVM
+ no anti-cache overhead
- wear-leveling necessary

Architecture 1

DRAM	

NVM	

Architecture 2

NVM	

Architecture 1, YCSB, read-only, data 8X memory

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

1.5	 1.25	 1	 0.75	 0.5	

th
ro
ug
hp

ut
	

workload	 skew	

2X latency 4X latency 16X latency

Work in Progress
▸ implementation of Architecture 2
‣ also in H-Store

▸ further benchmarking
‣ YCSB, TPC-C, possibly others
‣ Architecture 1 vs. Architecture 2

▸ paper in preparation

Conclusions
▸ hardware has changed
▸ anti-caching to disk has 18-17X

speedup over disk-based architecture

‣ better utilization of available memory

▸ next-generation persistent memories
extend the benefits of anti-caching
beyond skewed workloads

Stan
Zdonik

(Brown)

Mike
Stonebraker

(MIT)

Stephen
Tu

(MIT)

Andy
Pavlo
(CMU)

Collaborators

Joy
Arulraj
(CMU)

Questions?

debrabant@cs.brown.edu

