
Squall: Fine-Grained Live Reconfiguration for
Partitioned Main Memory Databases

Aaron J. Elmore1, Vaibhav Arora2, Rebecca Taft3
Andrew Pavlo4, Divyakant Agrawal2,5, Amr El Abbadi2
1University of Chicago, 2University of California, Santa Barbara

3MIT CSAIL, 4Carnegie Mellon University, 5Qatar Computing Research Institute
aelmore@cs.uchicago.edu, {vaibhavarora,agrawal,amr}@cs.ucsb.edu,

rytaft@mit.edu, pavlo@cs.cmu.edu

ABSTRACT
For data-intensive applications with many concurrent users, mod-
ern distributed main memory database management systems (DBMS)
provide the necessary scale-out support beyond what is possible
with single-node systems. These DBMSs are optimized for the
short-lived transactions that are common in on-line transaction pro-
cessing (OLTP) workloads. One way that they achieve this is to
partition the database into disjoint subsets and use a single-threaded
transaction manager per partition that executes transactions one-at-
a-time in serial order. This minimizes the overhead of concurrency
control mechanisms, but requires careful partitioning to limit dis-
tributed transactions that span multiple partitions. Previous meth-
ods used off-line analysis to determine how to partition data, but
the dynamic nature of these applications means that they are prone
to hotspots. In these situations, the DBMS needs to reconfigure
how data is partitioned in real-time to maintain performance ob-
jectives. Bringing the system off-line to reorganize the database is
unacceptable for on-line applications.

To overcome this problem, we introduce the Squall technique
for supporting live reconfiguration in partitioned, main memory
DBMSs. Squall supports fine-grained repartitioning of databases
in the presence of distributed transactions, high throughput client
workloads, and replicated data. An evaluation of our approach on
a distributed DBMS shows that Squall can reconfigure a database
with no downtime and minimal overhead on transaction latency.

1. INTRODUCTION
The need for scalable main-memory DBMSs is motivated by de-

creasing memory costs and an increasing demand for high-throughput
transaction processing systems. Such systems eschew legacy disk-
oriented concurrency control and recovery mechanisms of tradi-
tional DBMSs [37] and alleviate the contention on shared data-
structures [17,26,31,40]. But some OLTP databases are larger than
the amount of DRAM that is available on a single node. Further-
more, modern web/mobile applications require always-available data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2723726.

with the ability to support sudden shifts in access patterns. The in-
ability to react to changes in usage or mitigate potential downtime
can cause significant financial losses for service providers [7].

This argues for the use of a distributed DBMS architecture where
the database is deployed in memory-only storage on a cluster of
shared-nothing nodes. These scalable DBMSs, colloquially known
as NewSQL [10], achieve high performance and scalability with-
out sacrificing the benefits of strong transactional guarantees by
spreading the databases across nodes into disjoint partitions. Re-
cent examples of these systems include H-Store [24] (and its com-
mercial version VoltDB [6]), MemSQL [2], and SQLFire [5].

Even if a database resides entirely in memory across multiple
partitions, the DBMS is not immune to problems resulting from
changes in workload demands or access patterns. For example, sud-
den increases in the popularity of a particular item in the database
can negatively impact the performance of the overall DBMS. Mod-
ern distributed systems can, in theory, add and remove resources
dynamically, but in practice it is difficult to scale databases in this
manner [23]. Increasing system capacity involves either scaling up
a node by upgrading hardware or scaling out by adding additional
nodes to the system in order to distribute load. Either scenario can
involve migrating data between nodes and bringing nodes off-line
during maintenance windows [18].

Previous work has shown how to migrate a database from one
node to another incrementally to avoid having to shut down the
system [8, 15, 19, 35]. These approaches, however, are not suitable
for partitioned main-memory DBMSs. In particular, they are pred-
icated upon disk-based concurrency control and recovery mech-
anisms. This means that they rely on concurrent data access to
migrate data using heavy-weight two-phase locking and snapshot
isolation methods to ensure correctness [19, 35]. More proactive
migration techniques rely on physical logging from standard repli-
cation and recovery mechanisms [8, 15]. But this dependency on
the DBMS’s replication infrastructure places additional strain on
partitions that may be already overloaded. Above all, these ap-
proaches are inappropriate for partitioned main-memory DBMSs
that execute transactions serially [37], since the system does not
support concurrent access or physical logging.

Even if one adapted these approaches to move partitions between
nodes, they are still not able to split one partition into multiple par-
titions. For example, if there is a particular entity in a partition that
is extremely popular (e.g., the Wu Tang Clan’s Twitter account),
then instead of migrating the entire partition to a new node it is
better to move those individual tuples to their own partition [38].

A better (but more difficult) approach is to dynamically reconfig-
ure the physical layout of the database while the system is live. This
allows the system to continue to process transactions as it migrates

299

H-Store Node

BadAss Chip 3000
Squirrels. Yes, Squirrels

BadAss Chip 3000
Squirrels. Yes, Squirrels

...

Partition
Data

Partition
Data

Execution EngineExecution Engine

Txn Coordinator

H-Store Cluster
Client

Application

Core Core

Procedure Name
Input Parameters

BadAss Chip 3000
Squirrels. Yes, Squirrels

BadAss Chip 3000
Squirrels. Yes, Squirrels

...
BadAss Chip 3000
Squirrels. Yes, Squirrels

BadAss Chip 3000
Squirrels. Yes, Squirrels

...

BadAss Chip 3000
Squirrels. Yes, Squirrels

BadAss Chip 3000
Squirrels. Yes, Squirrels

...
BadAss Chip 3000
Squirrels. Yes, Squirrels

BadAss Chip 3000
Squirrels. Yes, Squirrels

...

BadAss Chip 3000
Squirrels. Yes, Squirrels

BadAss Chip 3000
Squirrels. Yes, Squirrels

...
BadAss Chip 3000
Squirrels. Yes, Squirrels

BadAss Chip 3000
Squirrels. Yes, Squirrels

...

Figure 1: The H-Store architecture from [33].

data and immediately relieves contention on hotspots. Some dis-
tributed NoSQL DBMSs, such as MongoDB [3], support splitting
and migration of partitions to new nodes when the system needs to
re-balance [20]. But accomplishing this is easier when the DBMS
does not support atomic operations on multiple objects. Another
approach is to pre-allocate multiple “virtual” partitions for each real
partition at start-up and then migrate some of the virtual partitions
to new nodes for re-balancing the load [34]. The downside of this is
that the DBMS has no control of the contents of these virtual parti-
tions, and thus there is no way to know whether the migration will
result in the desired change in performance until after the virtual
partitions have been migrated. To the best of our knowledge, no
DBMS today supports the fine-grained, tuple-level load balancing
that is needed for the system to be truly autonomous.

Given the lack of solutions for this problem, we present the Squall
migration system for partitioned OLTP DBMSs. Our key contribu-
tion in this paper is an efficient mechanism for performing fine-
grained live reconfiguration by safely interleaving data migration
with executing transactions. We also present several optimizations
that reduce the migration costs for a variety of workloads. To evalu-
ate our work, we implemented Squall in the H-Store [1] DBMS and
measured the system’s performance using two OLTP workloads.
Our results demonstrate that Squall is able to reconfigure a DBMS
with no downtime and a minimal decrease in throughput.

The rest of the paper is organized as follows. We start in Sec-
tion 2 with an overview of the DBMS architecture targeted by our
work and the reconfiguration scenarios that are important in this
operating environment. We then present Squall in Section 3, dis-
cuss the details of data reconfiguration management in Section 4,
and outline several optimizations in Section 5. Section 6 outlines
how fault tolerance is enabled in Squall. We then provide a thor-
ough evaluation of Squall in Section 7. Finally, we describe related
work in Section 8, and conclude in Section 9.

2. BACKGROUND
We begin with an overview of the architecture of H-Store, an ex-

ample of the type of distributed DBMS that we target in this work.
We then show how these DBMSs are susceptible to load imbalances
and how a naïve migration approach to reconfiguring a database is
insufficient. Although we use H-Store in our analysis, our work is
applicable to any partitioned, main memory OLTP DBMS.

2.1 H-Store Architecture
H-Store is a distributed, row-oriented DBMS that supports se-

rializable execution of transactions over main memory partitions.
We define an H-Store instance as a cluster of two or more nodes de-
ployed within the same administrative domain. A node is a single
physical computer system that contains a transaction coordinator
that manages one or more partitions.

H-Store is optimized for the efficient execution of workloads
that contain transactions invoked as pre-defined stored procedures.
Each stored procedure is comprised of (1) parameterized queries
and (2) control code that contains application logic intermixed with
invocations of those queries. Client applications initiate transac-
tions by sending the procedure name and input parameters to any
node in the cluster. The partition where the transaction’s control
code executes is known as its base partition [33]. The base par-
tition ideally will have most (if not all) of the data the transaction
needs [32]. Any other partition involved in the transaction that is
not the base partition is referred to as a remote partition.

As shown in Fig. 1, each partition is assigned a single-threaded
execution engine that is responsible for executing transactions and
queries for that partition. A partition is protected by a single lock
managed by its coordinator that is granted to transactions one-at-
a-time based on the order of their arrival timestamp [9, 13, 41]. A
transaction acquires a partition’s lock if (a) the transaction has the
lowest timestamp that is not greater than the one for the last trans-
action that was granted the lock and (b) it has been at least 5 ms
since the transaction first entered the system [37]. This wait time
ensures that distributed transactions that send their lock acquisition
messages over the network to remote partitions are not starved. We
assume that standard clock-skew algorithms are used to keep the
nodes’ CPU clocks synchronized.

Executing transactions serially at each partition has several ad-
vantages for OLTP workloads. In these applications, most transac-
tions only access a single entity in the database. That means that
these systems are much faster than a traditional DBMS if the data-
base is partitioned in such a way that most transactions only access
a single partition [32]. The downside of this approach, however, is
that transactions that need to access data at two or more partitions
are slow. If a transaction attempts to access data at a partition that
it does not have the lock for, then the DBMS aborts that transaction
(releasing all of the locks that it holds), reverts any changes, and
then restarts it once the transaction re-acquires all of the locks that it
needs again. This removes the need for distributed deadlock detec-
tion, resulting in better throughput for short-lived transactions [22].

All data in H-Store is stored in main memory. To ensure that
transactions’ modifications are durable and persistent, each node
writes asynchronous snapshots of the entire database to disk at fixed
intervals [25,37]. In between these snapshots, the DBMS writes out
a record to a redo-only command log for each transaction that com-
pletes successfully [27]. In addition to snapshots and command
logging, main memory databases often use replication to provide
durability and high availability. Each partition is fully replicated by
another secondary partition that is hosted on a different node [27].

2.2 Database Partitioning
A partition plan for a database in a distributed OLTP DBMS is

comprised of (1) partitioned tables, (2) replicated tables, and (3)
transaction routing parameters [32]. A table can be horizontally
partitioned into disjoint fragments whose boundaries are based on
the values of one (or more) of the table’s columns (i.e., partitioning
attributes). Alternatively, the DBMS can replicate non-partitioned
tables across all partitions. This table-level replication is useful
for read-only or read-mostly tables that are accessed together with
other tables but do not partition in accordance with other tables.
A transaction’s routing parameters identify the transaction’s base
partition from its input parameters.

Administrators deploy databases using a partition plan that min-
imizes the number of distributed transactions by collocating the
records that are used together often in the same partition [14, 32].
A plan can be implemented in several ways, such as using hash,
range, or round-robin partitioning [16]. For this paper, we modi-

300

10467

W_ID City Zip

1 Miami 33132

2 Seattle 98101

C_ID Name W_ID

14 Ron 1

2 Wyatt 2

12 Jack 1

Warehouse

Customer

Partition 1

W_ID City Zip
3 New York 10467

4 Chicago 60414

C_ID Name W_ID
1 Mike 3

1004 Gabriel 3

3 Dean 3

Warehouse

Customer

Partition 2

W_ID City Zip

5 Los Angeles 90001

7 San Diego 92008

C_ID Name W_ID

21 Snake 5

7 R.J. 5

4 Stephen 7

Warehouse

Customer

Partition 3

W_ID City Zip

10 Austin 78702

C_ID Name W_ID

9 Todd 10

Warehouse

Customer

Partition 4
Figure 2: Simple TPC-C data, showing WAREHOUSE and CUSTOMER parti-
tioned by warehouse IDs.

0% 20% 40% 60% 80%
Percent of New Orders for Warehouse 1-3

0

5000

10000

15000

TP
S

Figure 3: As workload skew increases, the number of new order transac-
tions increasingly access 3 warehouses in TPC-C and the collocated ware-
houses experience reduced throughput due to contention.

fied H-Store to use range partitioning. We discuss how to support
alternative partitioning schemes in Appendix C.

Fig. 2 shows a simplified TPC-C database partitioned by the
plan in Fig. 5a. The WAREHOUSE table is partitioned by its id col-
umn (W_ID). Since there is a foreign key relationship between the
WAREHOUSE and CUSTOMER tables, the CUSTOMER table is also parti-
tioned by its W_ID attribute. Hence, all data related to a given W_ID
(i.e., both WAREHOUSE and CUSTOMER) are collocated on a single par-
tition. Any stored procedure that reads or modifies either table will
use W_ID as its routing parameter. Since there is a foreign-key re-
lationship between CUSTOMER and WAREHOUSE, the CUSTOMER table
does not need an explicit mapping in the partition plan. We will use
this simplified example throughout the paper for exposition.

2.3 The Need for Live Reconfiguration
Although partitioned DBMSs like H-Store execute single-partition

transactions more efficiently than systems that use a heavyweight
concurrency control scheme, they are still susceptible to perfor-
mance degradations due to changes in workload access patterns [32].
Such changes could either cause a larger percentage of transactions
to access multiple partitions or partitions to grow larger than the
amount of memory available on their node. As with any distributed
system, DBMSs need to react to these situations to avoid becom-
ing overloaded; failing to do so in a timely manner can impact both
performance and availability in distributed DBMSs [20].

To demonstrate the detrimental effect of overloaded partitions
on performance, we ran a micro-benchmark using H-Store with a
three-node cluster. For this experiment, we used the TPC-C bench-
mark with a 100 warehouse database evenly distributed across 18
partitions. We modified the TPC-C workload generator to create
a hotspot on one of the partitions by having a certain percentage
of transactions access one of three hot warehouses instead of a
uniformly random warehouse. Transaction requests are submitted
from up to 150 clients running on a separate node in the same clus-

ter. We postpone the details of these workloads and the execution
environment until Section 7. As shown in Fig. 3, as the warehouse
selection moves from a uniform to a highly skewed distribution, the
throughput of the system degrades by ∼60%.

This shows that overloaded partitions have a significant impact
on the throughput of a distributed DBMS like H-Store. The so-
lution is for the DBMS to respond to these adverse conditions by
migrating data to either re-balance existing partitions or to offload
data to new partitions. Some of the authors designed E-Store [38]
for automatically identifying when a reconfiguration is needed and
to create a new partition plan to shuffle data items between par-
titions. E-Store uses system-level statistics (e.g., sustained high
CPU usage) to identify the need for reconfiguration, and then uses
tuple-level statistics (e.g., tuple access frequency) to determine the
placement of data to balance load across partitions. E-Store relies
on Squall to execute the reconfiguration. Both components view
each other as a black-box; E-Store only provides Squall with an
updated partition plan and a designated leader node for a reconfig-
uration. Squall makes no assumptions on the plans generated by a
system controller other than that all tuples must be accounted for.

0 20 40 60 80 100 120
Elapsed Time (seconds)

0

5000

10000

15000

TP
S

Figure 4: A Zephyr-like migration on two TPC-C warehouses to alleviate a
hot-spot effectively causes downtime in a partitioned main-memory DBMS.

In building E-Store we evaluated a Zephyr-like migration for
load-balancing (cf. Section 7 for a detailed description) where des-
tination partitions reactively migrate tuples as needed and period-
ically pull large blocks of tuples. As shown by Fig. 4, however,
this approach results in downtime for the system, and is therefore
not an option for modern OLTP systems. This disruption is due
to migration requests blocking transaction execution and a lack of
coordination between partitions involved in the migration.

These issues highlight the demand for a live reconfiguration sys-
tem that seeks to minimize performance impact and eliminate down-
time. We define a live reconfiguration as a change in the assignment
of data to partitions in which data is migrated without any part of
the system going off-line. A reconfiguration can cause the number
of partitions in the cluster to increase (i.e., data from existing parti-
tions are sent to a new, empty partition), decrease (i.e., data from a
partition being removed is sent to other existing partitions), or stay
the same (i.e., data from one partition is sent to another partition).

3. OVERVIEW OF SQUALL
Squall is a technique for efficiently migrating fine-grained data in

a strongly consistent distributed OLTP DBMS. The key advantage
of Squall over previous approaches is that it does not require the
DBMS to halt execution while all data migrates between partitions,
thereby minimizing the impact of reconfiguration. The control of
data movement during a reconfiguration is completely decentral-
ized and fault-tolerant.

Squall is focused on the problem of how to perform this reconfig-
uration safely. In particular, Squall ensures that during the reconfig-
uration process the DBMS has no false negatives (i.e., the system
assumes that a tuple does not exist at a partition when it actually
does) or false positives (i.e., the system assumes that a tuple exists

301

plan:{
"warehouse (W_ID)": {
"Partition 1" : [0-3)
"Partition 2" : [3-5)
"Partition 3" : [5-9)
"Partition 4" : [9-)

}}

(a) Old Plan

plan:{
"warehouse (W_ID)": {
"Partition 1": [0-2)
"Partition 2": [3-5)
"Partition 3": [2-3),[5-6)
"Partition 4": [6-)

}}

(b) New Plan

Figure 5: An example of an updated partition plan for the TPC-C database
shown in Fig. 2.

at a partition when it does not). Determining when a reconfigu-
ration should occur and how the partition plan should evolve are
addressed in the E-Store project [38]. We assume that a separate
system controller monitors the DBMS and then initiates the recon-
figuration process by providing the system with the new partition
plan when appropriate [18, 38].

Squall processes a live reconfiguration in three stages: (1) ini-
tializing the partitions’ tracking data structures, (2) migrating data
between partitions, and (3) identifying when the reconfiguration
process has terminated. In this section, we provide an overview of
these three steps. We discuss Squall’s data migration protocol in
further detail in Section 4. We then present optimizations of this
process in Section 5, such as eager data requests and a divide-and-
conquer technique for reconfiguration plans.

3.1 Initialization
The initialization phase synchronously engages all of partitions

in the cluster to start a new reconfiguration. As part of this step,
each partition prepares for reconfiguration and identifies the tuples
it will be exchanging with other partitions.

A reconfiguration starts when the DBMS is notified by an exter-
nal controller that the system needs to re-balance. This notification
identifies (1) the new partition plan for the database and (2) the des-
ignated leader node for the operation. The leader is any node in the
cluster that contains a partition affected by the reconfiguration. If
the reconfiguration calls for a new node to be added to the cluster,
then that node must be on-line before the reconfiguration can begin.

To initiate the reconfiguration, the leader invokes a special trans-
action that locks every partition in the cluster and checks to see
whether it is allowed to start the reconfiguration process. This lock-
ing is the same as when a normal transaction needs to access every
partition in the system. The request is allowed to proceed if (1)
the system has terminated all previous reconfigurations and (2) the
DBMS is not writing out a recovery snapshot of the database to
disk. If either of these conditions is not satisfied, then the transac-
tion aborts and is re-queued after the blocking operation finishes.
This ensures that all partitions have a consistent view of data owner-
ship and prevents deadlocks caused by concurrent reconfigurations.

Once all of the partitions agree to start the reconfiguration, they
then enter a “reconfiguration mode” where each partition examines
the new plan to identify which tuples are leaving the partition (out-
going) and which tuples will be moving into the partition (incom-
ing). These incoming and outgoing tuples are broken into ranges
based on their partitioning attributes. As we discuss in Section 5,
this step is necessary because Squall may need to split tuple ranges
into smaller chunks or split the reconfiguration into smaller sub-
reconfigurations for performance reasons.

After a partition completes this local data analysis, it notifies the
leader and waits to learn whether the reconfiguration will proceed.
If all of the partitions agree to proceed with the reconfiguration,
then the leader sends out acknowledgement to all of the partitions
to begin migrating data. Squall only uses this global lock during
the initialization phase to synchronize all partitions to begin recon-

figuration and does not migrate any data. Since the reconfiguration
transaction only modifies the meta-data related to reconfiguration,
the transaction is extremely short and has a negligible impact on
performance. For all our trials in our experimental evaluation, the
average length of this initialization phase was ∼130 ms.

3.2 Data Migration
The easiest way to safely transfer data in a distributed DBMS is

to stop executing transactions and then move data to its new loca-
tion. This approach, known as stop-and-copy, ensures that transac-
tions execute either before or after the transfer and therefore have
a consistent view of the database. But shutting down the system
is unacceptable for applications that cannot tolerate downtime, so
stop-and-copy is not an option. It is non-trivial, however, to transfer
data while the system is still executing transactions. For example,
if half of the data that a transaction needs has already been mi-
grated to a different partition, it is not obvious whether it is better
to propagate changes to that partition or restart the transaction at
the new location. The challenge is in how to coordinate this data
movement between partitions without any lost or duplicated data,
and with minimal impact to the DBMS’s performance.

To overcome these problems, Squall tracks the location of mi-
grating tuples at each partition during the reconfiguration process.
This allows each node’s transaction manager to determine whether
it has all of the tuples that are needed for a particular transaction.
If the system is uncertain of the current location of required tu-
ples, then the transaction is scheduled at the partitions where the
data is supposed to be according to the new plan. Then when the
transaction attempts to access the tuples that have not been moved
yet, Squall will reactively pull data to the new location [19, 35].
Although this on-demand pull method introduces latency for trans-
actions, it has four benefits: (1) it always advances the progress of
data migration, (2) active data is migrated earlier in the reconfigu-
ration, (3) it requires no external coordination, and (4) it does not
incur any downtime to synchronize ownership metadata.

In addition to the on-demand data pulls, Squall also asynchronously
migrates additional data so that the reconfiguration completes in a
timely manner. All of these migration requests are executed by a
partition in the same manner as regular transactions. Each partition
is responsible for tracking the progress of migrating data between
itself and other partitions. In other words, each partition only tracks
the status of the tuples it is migrating. This allows it to identify
whether a particular tuple is currently stored in the local partition
or whether it must retrieve it from another partition.

3.3 Termination
Since there is no centralized controller in Squall that monitors

the process of data migration, it up to each partition to indepen-
dently determine when it has sent and/or received all of the data
that it needs. Once a partition recognizes that it has received all of
the tuples required for the new partition plan, it notifies the current
leader that the data migration is finished at that partition. When the
leader receives acknowledgments from all of the partitions in the
cluster, it notifies all partitions that the reconfiguration process is
complete. Each partition removes all of its tracking data structures
and exits the reconfiguration mode.

4. MANAGING DATA MIGRATION
The migration of data between partitions in a transactionally safe

manner is the most important feature of Squall. As such, we now
discuss this facet of the system in greater detail.

We first describe how Squall divides each partition’s migrating
tuples into ranges and tracks the progress of the reconfiguration

302

Reconfiguration

Pull

W_ID=2

Pull

W_ID>5

Warehouse

W_ID: 3-4

Customer

W_ID: 3-4

Txns

Partition 2

Warehouse

W_ID: 0-2

Customer

W_ID: 0-2

Txns

Partition 1

Warehouse

W_ID: 5-8

Customer

W_ID: 5-8

Txns

Partition 3

Warehouse

W_ID: 9-

Customer

W_ID: 9

Txns

Partition 4

Warehouse

W_ID: 3-4

Customer

W_ID: 3-4

Txns

Partition 2

Warehouse

W_ID: 0-1

Customer

W_ID: 0-1

Txns

Partition 1

Warehouse

W_ID: 2,5

Customer

W_ID: 2,5

Txns

Partition 3

Warehouse

W_ID: 6-

Customer

W_ID: 6-

Txns

Partition 4

Squall

State

Squall

State

Squall

State

Squall

State

Incoming:

WHouse: (2)

Customer: (2)

Outgoing:

WHouse: [6,9)

Customer: [6,9)

Figure 6: As a system’s partition plan changes, Squall tracks the progress
of the reconfiguration at each node to ensure correct data ownership.

based on these ranges. We then describe the two ways that Squall
moves data: reactive migration and asynchronous migration. The
former moves tuples when transactions need them. This allows the
system to migrate hot tuples early in the reconfiguration without the
use of complex usage modeling [36]. The latter is when the system
periodically sends data to ensure that the reconfiguration eventually
completes with minimal impact on the DBMS’s performance.

To help explain this process, we will refer to Figs. 5 and 6 as our
running example. For a particular tuple that is migrating from one
partition to another, we refer to the partition that is losing that tuple
as the source partition and the partition that receives the tuple as
the destination partition. Although a partition can be both a source
and destination during a reconfiguration, we refer to a partition as
either a source or destination for a particular tuple.

4.1 Identifying Migrating Data
When a new reconfiguration begins, Squall calculates the differ-

ence between the original partition plan and the new plan to deter-
mine the set of incoming and outgoing tuples per partition. This
allows a partition to determine when it can safely execute a trans-
action that accesses migrating data without any external metadata.

Migrating tuples are organized into reconfiguration ranges that
specify a table name, the partitioning attribute(s) of the table, the
minimum-inclusive key, maximum-exclusive key, and the old/new
partition IDs. Tables in distributed OLTP DBMSs are partitioned
by one or more columns [14, 32]. Without loss of generality, how-
ever, we discuss reconfiguration ranges for the single column case.

Each partition locally organizes the ranges into incoming and
outgoing ranges based on the previous and new partition IDs. For
example, in the reconfiguration shown in Figs. 5 and 6, the incom-
ing warehouses for partition 3 are noted as:

(WAREHOUSE, W_ID = [2, 3), 1 → 3)

This means that partition 3 receives warehouse 2 from partition
1. Likewise, the following range identifies that partition 3 sends all
warehouses with an ID of 6 or greater to partition 4:

(WAREHOUSE, W_ID = [6,∞), 3 → 4)

These rules cascade for all tables that are not explicitly listed
in these partition plan entries. That is, any table with a foreign-
key relationship to one of the tables identified in an entry will have
its tuples migrated based on these rules as well. In our TPC-C
example, the CUSTOMER table is partitioned by its WAREHOUSE ID,
thus partition 3 would also have the following implicit rule that
sends all customers with a W_ID of 6 or greater to partition 4:

(CUSTOMER, W_ID = [6,∞), 3 → 4)

All of the tables in TPC-C that are partitioned on their WAREHOUSE
id, such as DISTRICT, ORDERS, and STOCK, are handled similarly.
We note that this makes predicting how long the migration will

take for a partition difficult. Since these tables are not partitioned
by a primary or unique key, the number of tuples associated with a
range can be far larger than the cardinality of the partition keys en-
capsulated by the range (e.g., there can be thousands of customers
associated with a single W_ID).

Each of the above ranges is derived deterministically from the
original and new partition plans. This means that each partition
can independently calculate its local set of incoming and outgoing
ranges from the updated plan that it received in the initialization
phase. The advantage of this approach is that a partition only has to
track the list of ranges migrating to or from itself. This reduces the
amount of global state that Squall maintains during the reconfig-
uration and facilitates several other enhancements to improve per-
formance. We discuss these additional optimizations for this phase
in Section 5, including how to split ranges to reduce the amount of
data associated with each of them.

4.2 Tracking Reconfiguration Progress
Squall tracks the progress of data migration for all incoming and

outgoing ranges at a particular partition. It maintains a table at each
partition to record the current status of these ranges:

NOT STARTED: The data associated with the range has not yet mi-
grated to/away from this partition, and therefore all data as-
sociated with the range is located at the source partition.

PARTIAL: Some of the data for the range has been migrated, and
some of the tuples may be currently in-flight between the
source and destination partitions.

COMPLETE: All of the data for the range has migrated to the des-
tination partition.

Continuing with our example from Section 4.1, a status of NOT
STARTED for the CUSTOMER table range indicates that all customers
with a W_ID of 6 or greater are present only at partition 3. This
means that any transaction that needs to access the tuples for these
customers will do so at partition 3.

Since a transaction could execute a query that contains a predi-
cate at a different granularity than the reconfiguration range, Squall
allows for the initial reconfiguration ranges to be split into sub-
ranges by a query. For the same WAREHOUSE range example with a
NOT STARTED status, assume that a transaction arrives at partition 4
that executes the following query:

SELECT * FROM WAREHOUSE WHERE W_ID >= 6 AND W_ID <= 7

The original range includes customers with W_ID > 7, thus the
entire range is not needed for this transaction. In this scenario,
partition 4 would split the original range [6,∞) into the following
two ranges both with the status of NOT STARTED:

(WAREHOUSE, W_ID = [6, 8), 3 → 4)
(WAREHOUSE, W_ID = [8,∞), 3 → 4)

When partition 4 requests the data associated with the first range,
partition 3 similarly splits its original range to reflect the requested
range. Once the data for the sub-range is migrated, both partitions
update the status of the first range to COMPLETE.

For transactions with queries that access an individual key through
an equality predicate (e.g., W_ID = 7), Squall must find the range
that the key belongs to in its tracking table to determine which par-
tition has that data. Since many OLTP workloads are comprised
of transactions that access tuples through single keys, Squall also
supports recording the movement of individual tuples at the key
level through its tracking table. This enables faster lookups at run-
time than scanning the partition plan entries to determine whether

303

a key is in a range. It also reduces the amount of work required for
range splitting and simplifies the tracking of keys with non-discrete
domains (e.g., strings or floating-point values).

When a transaction reads or updates tuples, Squall ensures that
all required data is present. Using our TPC-C example from above,
assume that no data has yet been migrated (i.e., all of the entries
in the tracking table are set to NOT STARTED). A transaction then
arrives at partition 4 that executes a query to update the WAREHOUSE
tuple with W_ID = 7. After failing to find a matching key entry in
the tracking table and checking that the corresponding range is not
marked as COMPLETE, partition 4 issues a request for (WAREHOUSE,
W_ID = 7). Once the warehouse is migrated, both partitions set the
corresponding WAREHOUSE range in the status table to PARTIAL and
add a key-based entry for (WAREHOUSE, W_ID = 7) in the tracking
table with the status of COMPLETE.

4.3 Identifying Data Location
Under normal operation, when a new transaction request arrives

at the DBMS, the system evaluates the routing parameters for the
stored procedure that the transaction wants to execute with the cur-
rent plan to determine the base partition for that request [29, 32].
But during a reconfiguration, Squall intercepts this process and uses
its internal tracking metadata to determine the base partition. This
is because the partition plan is in transition as tuples move and thus
the location of a migrating tuple is uncertain. The mechanisms in
Section 4.2 ensure safe execution of transactions on migrating data,
whereas the following techniques for determining where to execute
transactions are for improving the DBMS’s performance.

If the data that a transaction needs is moving and either the source
or destination partition is local to the node receiving the transac-
tion, then Squall will check with the local partition to determine
whether the required tuple(s) are present (i.e., the source partition
has the range marked NOT STARTED or the destination partition has
the range marked COMPLETE). If Squall deems that the tuples’ loca-
tions are uncertain, then it forwards the request to the destination
partition. Since a transaction could have been (correctly) sched-
uled at a source partition before tuples were migrated, Squall traps
transaction execution before it starts to verify that those required
tuples were not migrated out while the transaction was queued. In
this scenario, the transaction is restarted at the destination partition.

Scheduling the transaction at the partition that always has the re-
quired tuples improves performance by avoiding a migration when
a transaction has already arrived at the same local site. But in all
other cases, it is better to send the transaction to the destination
partition and then use Squall’s reactive migration mechanism to
pull data as it is needed. This alleviates overloaded partitions more
quickly by migrating hot tuples first and minimizes the communi-
cation overhead of partitions trying to determine a tuple’s location.

4.4 Reactive Migration
Squall schedules each transaction at its corresponding destina-

tion partition, even if the system has not completed the migration
of the data that the transaction will access when it executes. Like-
wise, when a transaction invokes a query, Squall examines the re-
quest to determine whether the data that it accesses has migrated to
its destination partition. In this scenario, the destination partition
blocks the query while the data is reactively pulled from the source
partition. This blocks all transactions that access these partitions
during this time, thereby avoiding consistency problems (e.g., two
transactions modify the same the tuple while it is moving).

To perform the reactive migration, Squall issues a pull request to
the source partition. This request is queued just like a transaction
and thus acquires exclusive locks on both source and destination

partitions. As both partitions are locked during the migration of
data items, no other transaction can concurrently issue a read or
update query at these partitions, thereby preventing any transaction
anomalies due to the reconfiguration.

The pull request is scheduled at the source partition with the
highest priority so that it executes immediately after the current
transaction completes and any other pending reactive pull requests.
Squall relies on the DBMS’s standard deadlock detection to pre-
vent cyclical reactive migrations from stalling the system, since all
transactions are blocked while the source partition is extracting the
requested data. Additionally, transaction execution is also blocked
at the destination partition when it loads the requested data. Since
the blocking caused by reactive migrations can be disruptive for ac-
tive transactions, Squall also employs an additional asynchronous
migration mechanism to minimize the number of reactive pulls.

4.5 Asynchronous Migration
After Squall initializes the list of incoming data ranges for each

partition (cf. Section 3.1), it then generates a series of asynchronous
migration requests that pull data from the source partitions to their
new destination. During the reconfiguration, Squall periodically
schedules these requests one-at-a-time per partition with a lower
priority than the reactive pull requests.

When the source partition receives an asynchronous pull request,
it first marks the target range as PARTIAL in its tracking table. It
then sub-divides the request into tasks that each retrieve a fixed-size
chunk to prevent transactions from blocking for too long if Squall
migrates a large range of tuples. If the last task did not extract
all of the tuples associated with the range, then another task for the
asynchronous pull request is rescheduled at the source partition. As
Squall sends each chunk to the destination partition, it includes a
flag that informs the destination whether it will send more data for
the current range. For the first chunk that arrives at the destination
for the range, the destination lazily loads this data and marks the
range as PARTIAL in its tracking table. This process repeats until
the last chunk is sent for the current range.

Squall will not initiate two concurrent asynchronous migration
requests from a destination partition to the same source. Addition-
ally, before issuing an asynchronous pull request, Squall checks if
the entire range has been pulled by a prior reactive migration (i.e.,
marked as COMPLETE). If so, the request is discarded; otherwise the
full request is issued as only matching data at the source will be
returned. Additionally, if a transaction attempts to access partially
migrated data, then this forces a reactive pull to migrate the remain-
ing data or flush pending responses (if any).

Since limiting the amount data per extraction and interleaving
regular transaction execution is paramount to minimizing perfor-
mance impact, the time between asynchronous data requests and
the asynchronous chunk size limit are both controlled by Squall.
These settings allow Squall to balance the trade-off between time
to completion and impact of reconfiguration. We explore the opti-
mal setting for these parameters in Section 7.6.

5. OPTIMIZATIONS
We next present several optimizations for improving the runtime

performance of the DBMS during a reconfiguration with Squall.

5.1 Range Splitting
As described in Section 4.1, Squall computes the initial transfer

ranges of tuples for a new reconfiguration by analyzing the differ-
ence between the previous and new partition plans. If the new parti-
tion plan causes a large number of tuples to move to a new location,
Squall may schedule transactions on the destination partition when

304

plan:{ "warehouse (W_ID)":{
"Partition 1->2" : [1-2),
"Partition 1->3" : [2-3),
"Partition 1->4" : [3-4)

}}

↗

→

↘

plan:{ "warehouse (W_ID)":{
"Partition 1->2" : [1-2) }}

plan:{ "warehouse (W_ID)":{
"Partition 1->3" : [2-3) }}

plan:{ "warehouse (W_ID)":{
"Partition 1->4" : [3-4) }}

Figure 7: A sample reconfiguration plan split into three sub-plans.

District'1' District'10'

Warehouse'1'

Order'1'

Customer'1' Customer'3,000'

Order'5'

…'

…'

…'

Par$$on'1'

Order'YYY1'

Customer'XXX'

Order'YYY8''…'

District'2'

Customer'YYY'

Par$$on'2'

Figure 8: During reconfiguration in TPC-C, Squall uses secondary parti-
tioning to split the DISTRICT table to avoid moving an entire WAREHOUSE
entity all at once. While migration is in progress, the logical warehouse is
split across two partitions, causing some distributed transactions.

they would be better served running on the source partition. For ex-
ample, the following range entry requires movement of 100k tuples
from the WAREHOUSE table from partition 3 to partition 4:

(WAREHOUSE, id = [1, 100000), 3 → 4)

Although Squall’s asynchronous migration mechanism would split
this range into smaller chunks, once the first chunk is extracted the
entire range is marked as PARTIAL in the source and destination
partitions’ tracking tables. This will cause all transactions that ac-
cess data within this range to be routed to the destination partition
and any query that accesses data within this range will potentially
cause a reactive pull, even if the data was already migrated.

For this reason, during the initialization phase, Squall splits con-
tiguous ranges into smaller sub-ranges, each with an expected size
equal to the chunk size. Assuming that the average size of each tu-
ple is 1 KB in our above example, with a chunk size limit of 1 MB
the range would be set to [1, 1000),[1000, 2000),...,[99000, 100000).
Such smaller ranges result in fewer partial ranges, and thus reduce
the likelihood that transactions are blocked unnecessarily.

5.2 Range Merging
In addition to splitting large contiguous ranges, Squall also com-

bines small, non-contiguous ranges together to reduce the number
of pull requests. For example, suppose a hotspot has formed on
partition 1 for keys [1, 10). The controller’s load-balancing algo-
rithm may distribute keys to other partitions in a round-robin man-
ner. In this example, assume keys (1, 3, 5, 7, 9) are migrated from
partition 1 to partition 2. This would result in five migration pull
requests between the partitions for a small amount of data per re-
quest. Since there is overhead and disruption to service associated
with each reactive pull, issuing these small requests individually is
sub-optimal. Therefore, if a table is partitioned on a unique key and
has a fixed tuple size, Squall will merge small ranges into a single
pull request that is composed of multiple ranges. The size of this
merged range is capped to half of the chunk size limit.

5.3 Pull Prefetching
We also extend Squall’s reactive pull mechanism to eagerly re-

turn more data from the source partition than is requested each
time. When a pull request requests a key that is (1) partitioned on
a unique column, (2) has fixed-size tuples (e.g., no varchar fields),
and (3) has split reconfiguration ranges (cf. Section 5.1), Squall
eagerly returns the entire range instead of the single requested key.
In our experience, the additional time to extract additional tuples is
substantially less than the time to schedule and process additional
pull requests for the remaining of tuples in the range.

5.4 Splitting Reconfigurations
Executing a reconfiguration as a single step can cause perfor-

mance problems due to contention on a single partition. Such con-
tention can occur when a single partition is the source for many
destination partitions (e.g., when moving tuples out of a hotspot
partition). In this scenario, multiple destination partitions make
concurrent migration requests to the same source partition. Each
of these requests blocks transaction execution, thus increasing the
load on the already-overloaded source partition. This contention
can also occur for certain workloads, such as TPC-C, when there is
a large amount of data associated with an individual partition key.
These request convoys greatly degrade the DBMS’s performance
beyond what normally occurs during a reconfiguration.

To avoid this problem, Squall throttles data movement by split-
ting a large reconfiguration into smaller units. Squall first identifies
the ranges of keys that need to move in order to transition to the new
partition plan. It then splits these ranges into a fixed number of sub-
plans where each partition is a source for at most one destination
partition in each sub-plan. This is different than the splitting of re-
configuration ranges described in Section 5.1. because it reduces
the number of partitions that retrieve data from a single partition.

As shown in the example in Fig. 7, the plan on the left moves
data from partition 1 to partitions 2, 3, and 4. The plan is then di-
vided into three separate sub-plans that each migrate data from par-
tition 1 to just one partition at a time. The reconfiguration leader is
responsible for generating these sub-plans and ensuring that all par-
titions move through the sub-plans together. The advantage of this
approach is that it does not require additional coordination from a
partition that is already overloaded.

For databases with a tree-based schema [37], Squall can also split
reconfigurations at a finer granularity using secondary partitioning
attributes. This allows the system to split up the migration of root-
level keys that would otherwise require a significant number of re-
lated tuples to be migrated simultaneously. For example, the tables
in TPC-C are typically partitioned by the WAREHOUSE id. But each
warehouse in TPC-C may have over one million tuples associated
with it. Each warehouse contains 10 DISTRICT records, however,
so by partitioning the tables using their DISTRICT ids, Squall can
split a warehouse into 10 pieces to limit the overhead of each data
pull (cf. Fig. 8). Splitting the ranges in this way increases the
number of distributed transactions in TPC-C, but avoids blocking
execution for extended periods by throttling migrations.

6. FAULT TOLERANCE
Distributed DBMS like H-Store ensure high availability and fault

tolerance through replicating partitions on other nodes [37]. Each
partition is fully replicated at another node and must remain in sync
with the primary during reconfiguration. Squall fully integrates
with these master-slave replication schemes.

Squall schedules any reconfiguration operation at both the pri-
mary and its secondaries, but all data movement is done through

305

the primary since it cannot assume that there is a one-to-one match
between the number of source replicas and destination replicas. For
the data extraction requests, the primary notifies secondaries when
a range is partially or fully extracted so the replica can remove tu-
ples from its local copy. Using fixed-size chunks enable the repli-
cas to deterministically remove the same tuples per chunk as their
primary without needing to send a list of tuple ids.

For data loading, the primary forwards the pull response to its
secondary replicas for them to load newly migrated tuples. Before
the primary sends an acknowledgement to Squall that it received
the new data, it must receive an acknowledgement from all of its
replicas. This guarantees strong consistency between the replicas
and that for each tuple there is only one primary copy at any time.

We now describe how Squall handles either the failure of a single
node or an entire cluster during a reconfiguration.

6.1 Failure Handling
The DBMS sends heartbeats between nodes and uses watchdog

processes to determine when a node has failed. There are three
cases that Squall handles: (1) the reconfiguration leader failing, (2)
a node with a source partition failing, and (3) a node with destina-
tion partition failing. A node failure can involve all three scenarios
(e.g., the leader fails and has in- and out-going data). Since replicas
independently track the progress of reconfiguration, they are able
to replace a failed primary replica during reconfiguration if needed.
If any node fails during reconfiguration, it is not allowed to rejoin
the cluster until the reconfiguration has completed. Afterwards it
recovers the updated state from its primary node.

During the data migration phase, the leader’s state is synchronously
replicated to secondary replicas. If the leader fails, a replica is able
to resume managing the reconfiguration. After fail-over, the new
leader replica sends a notification to all partitions to announce the
new leader. Along with this notification, the last message sent by
the leader is rebroadcast in case of failure during transmission.

When a node fails while migrating data, the secondary replica
replacing the partition’s primary replica reconciles any potentially
lost reconfiguration messages. Since migration requests are syn-
chronously executed at the secondary replicas, Squall is only con-
cerned with requests sent to the failed primary that have not yet
been processed. When a secondary replica is promoted to a pri-
mary, it broadcasts a notification to all partitions so that other par-
titions resend any pending requests to the recently failed site.

6.2 Crash Recovery
During a reconfiguration, the DBMS suspends all of its check-

point operations. This ensures that the partitions’ checkpoints stored
on disk are consistent (i.e., a tuple does not exist in two partitions at
the same time). The DBMS continues to write transaction entries
to its command log during data migration.

If the entire system crashes after a reconfiguration completes but
before a new snapshot is taken, then the DBMS recovers the data-
base from the last checkpoint and performs the migration process
again. The DBMS scans the command log to find the starting point
after the last checkpoint entry and looks for the first reconfiguration
transaction that started after the checkpoint. If one is found, then
the DBMS extracts the partition plan from the entry and uses that as
the current plan. The execution engine for each partition then reads
its last snapshot. For each tuple in a snapshot, Squall determines
what partition should store that tuple, since it may not be the same
partition that is reading in the snapshot.

Once the snapshot has been loaded into memory from the file on
disk, the DBMS then replays the command log to restore the data-

base to the state that it was in before the crash. The DBMS’s coordi-
nator ensures that these transactions are executed in the exact order
that they were originally executed the first time. Hence, the state of
the database after this recovery process is guaranteed to be correct,
even if the number of partitions changes due to the reconfiguration.
This is because (1) transactions are logged and replayed in serial
order, so the re-execution occurs in exactly the same order as in
the initial execution, and (2) replay begins from a transactionally-
consistent snapshot that does not contain any uncommitted data, so
no rollback is necessary at recovery time [21, 27].

7. EXPERIMENTAL EVALUATION
We now present our evaluation of Squall. For this analysis, we

integrated Squall with H-Store [1] with an external controller that
initiates the reconfiguration procedure at a fixed time in the bench-
mark trial. We used the April 2014 release of H-Store with com-
mand logging enabled. We set Squall’s chunk size limit to 8 MB
and set a minimum time between asynchronous pulls to 200 ms. We
also limit the number of reconfiguration sub-plans to be between 5
and 20, with a 100 ms delay between them. The experiments in
Section 7.6 show our justification for this configuration.

The experiments were conducted on a cluster where each node
has a Intel Xeon E5620 CPU running 64-bit CentOS Linux with
OpenJDK 1.7. The nodes are in a single rack connected by a 1GB
switch with an average RTT of 0.35 ms.

As part of this evaluation, we also implemented three different
reconfiguration approaches in H-Store:

Stop-and-Copy: A distributed transaction locks the entire clus-
ter and then performs the data migration. All partitions block
until this process completes.

Pure Reactive: The system only pulls single tuples from the
source partition to the destination when they are needed. This
is the same as Squall but without the asynchronous migration
or any of the optimizations described in Section 5.

Zephyr+: This technique combines the pure-reactive migration
with chunked asynchronous pulls (cf. Section 4.5) and pull
prefetching (cf. Section 5.3) to simulate pulling data in pages
instead of individual keys.

The purely reactive reconfiguration approach is semantically equiv-
alent to the Zephyr [19] migration system based on the following
observations. First, Zephyr relies on a transaction execution com-
pleting at the source to begin a push-phase in addition to the reac-
tive pull-based migration. In general for a reconfiguration, transac-
tion execution at the source does not complete, so we stick to a pure
pull-based approach. Second, Zephyr can only migrate a disk-page
of tuples at a time (typically 4 KB). Squall on the other hand can
migrate both single tuples and ranges. Third, there is no need to
copy a “wireframe” between partitions to initialize a destination, as
all required information (e.g., schema or authentication) is already
present. In our experiments, the pure reactive technique was not
guaranteed to finish the reconfiguration (because some tuples are
never accessed) and pulling single keys at a time created significant
coordination overhead. Thus, we also implemented the Zephyr+
approach that uses chunked asynchronous pulls with prefetching.

Our experiments measure how well these approaches are able
to reconfigure a database in H-Store under a variety of situations,
including re-balancing overloaded partitions, cluster contraction,
and shuffling data between partitions. For experiments where Pure
Reactive and Zephyr+ results are identical, we only show the latter.

306

0

2000

4000

6000
TP

S Stop-and-Copy

0

2000

4000

6000

TP
S Pure Reactive

0

2000

4000

6000

TP
S Zephyr+

0 20 40 60 80 100 120
Elapsed Time (seconds)

0

2000

4000

6000

TP
S Squall

(a) Throughput (YCSB)

0

5000

10000

15000

TP
S

Stop-and-Copy

0

5000

10000

15000

TP
S

Zephyr+

0 50 100 150 200 250 300
Elapsed Time (seconds)

0

5000

10000

15000

TP
S

Squall

(b) Throughput (TPC-C)

0
50

100
150
200

La
t.

(m
s) Stop-and-Copy

0

2000

4000

6000

La
t.

(m
s) Pure Reactive

0
50

100
150
200

La
t.

(m
s) Zephyr+

0 20 40 60 80 100 120
Elapsed Time (seconds)

0
50

100
150
200

La
t.

(m
s) Squall

(c) Mean Latency (YCSB)

0

500

1000

1500

2000

La
t.

(m
s) Stop-and-Copy

0

500

1000

1500

2000

La
t.

(m
s) Zephyr+

0 50 100 150 200 250 300
Elapsed Time (seconds)

0

500

1000

1500

2000

La
t.

(m
s) Squall

(d) Mean Latency (TPC-C)

Figure 9: Load Balancing – Due to a skewed workload, one partition distributes hot tuples to cold partitions. YCSB distributes 90 tuples across 14 partitions
and TPC-C distributes all tuples associated with 2 warehouses to 2 different partitions.

7.1 Workloads
We now describe the two workloads from H-Store’s built-in bench-

mark framework that we used in our evaluation. Transaction re-
quests are submitted from 180 client threads running on separate
nodes. Each client submits transactions to any DBMS node in a
closed loop (i.e., it blocks after it submits a request until the result
is returned). In each trial, the DBMS “warms-up” for 30 seconds
and then measurements are collected for five minutes. Latencies
are measured as the time from when the client submits a request to
when it receives a response. The dashed vertical-line in our time-
series graphs denotes the start of a reconfiguration and the light
dotted line is the end of the reconfiguration.

YCSB: The Yahoo! Cloud Serving Benchmark is a collection
of workloads that are representative of large-scale services created
by Internet-based companies [12]. For all of the YCSB experi-
ments in this paper, we use a YCSB database containing a single
table with 10 million records. Each YCSB tuple has a primary key
and 10 columns each with 100 bytes of randomly generated string
data. The workload consists of two types of transactions; one that
updates a single record for 15% of operations and one that reads
a single record for the remaining 85% of operations. Our YCSB
workload generator supports executing transactions with either a
uniform access pattern or with Zipfian-skewed hotspots.

TPC-C: This benchmark is the current industry standard for
evaluating the performance of OLTP systems [39]. It consists of
nine tables and five procedures that simulate a warehouse-centric

order processing application. A key feature of this benchmark is
that roughly 10% of all transactions touch multiple warehouses,
which typically results in a multi-partition transaction. We use a
database with 100 warehouses partitioned across three nodes.

7.2 Load Balancing
We first evaluate how well the reconfiguration approaches are

able to reconfigure a skewed workload. In these tests, we create
a hotspot on a single partition and then migrate hot tuples away
from the overloaded partition. For YCSB, we evenly partition 10
million tuples between the four nodes and create a hotspot on 100
tuples. For TPC-C, we use a 100 warehouse database split across
three nodes and then create a three-warehouse hotspot on one par-
tition. We used a simple load-balancing algorithm that distributes
hot tuples to other partitions in a round-robin manner [38].

The YCSB results in Figs. 9a and 9c show that Squall has a lower
impact on the DBMS’s performance than the other methods, but
it takes longer to complete the reconfiguration. Initially, Squall
causes the DBMS’s throughput to drop by ∼30% in the first few
seconds when the reconfiguration begins. This is because transac-
tions are redirected to the new destination partition for the hotspot’s
tuples and then that data is pulled from their source partition. After
this initial dip, the throughput steadily increases as the overloaded
partition becomes less burdened until the reconfiguration completes
after ∼20 seconds. The DBMS’s performance for the other meth-
ods is strikingly different: they all halt transaction execution for 5–
15 seconds and increase response latency significantly even though

307

0

2000

4000

6000
TP

S Stop-and-Copy

0

2000

4000

6000

TP
S Pure Reactive

0

2000

4000

6000

TP
S Zephyr+

0 50 100 150 200 250 300
Elapsed Time (seconds)

0

2000

4000

6000

TP
S Squall

(a) Throughput (YCSB)

0
100
200
300
400

La
t.

(m
s) Stop-and-Copy

0

2000

4000

La
t.

(m
s) Pure Reactive

0

5000

10000

La
t.

(m
s) Zephyr+

0 50 100 150 200 250 300
Elapsed Time (seconds)

0
100
200
300
400

La
t.

(m
s) Squall

(b) Latency (YCSB)

Figure 10: Cluster Consolidation – Contracting from four nodes to three
nodes, with all remaining partitions receiving an equal number of tuples
from the contracting node.

the amount of data being migrated is small. For Stop-and-Copy,
this downtime results in thousands of aborted transactions. The
Pure Reactive and Zephyr+ migrations cause the DBMS to “hold”
transactions during the migration, which results in clients waiting
indefinitely for their requests to be processed. This demonstrates
that the difficulties in re-balancing an overloaded partition are not
only dependent on the amount of data that is moved.

For TPC-C, Figs. 9b and 9d again show that Stop-and-Copy
and Zephyr+ block execution for 24 and 30 seconds, respectively.
These results also show the DBMS’s performance to oscillate dur-
ing reconfiguration with Squall. This is because the transactions
access two large tables that cause Squall to send on-demand pull
requests that retrieve a lot of data all at once. It takes the system
500–2000 ms to move the data and update indexes for these tables,
during which the partitions are unable to process any transactions.
This causes their queues to get backed up and results in short peri-
ods during the reconfiguration when no transaction completes. It is
these distributed transactions in TPC-C that increase the likelihood
that a partition will block during data migration. As described in
Section 5.4, splitting a single reconfiguration into smaller sub-plans
minimizes contention on a single partition and reduces the amount
of data pulled in a single request by splitting up large ranges. These
results demonstrate how disruptive a large pull can be for methods
that lack this functionality.

7.3 Cluster Consolidation
We next measure the performance impact of the reconfiguration

methods when the number of nodes in the cluster contracts for a
fixed workload. For this experiment, we start with a YCSB data-
base that is partitioned across four nodes. The tuples are evenly di-
vided among the partitions and clients access tuples with a uniform
distribution. After 30 seconds, the system initiates a reconfigura-
tion that removes one of the nodes. This causes the DBMS to move
the data from the removed node to the other three remaining nodes.

The results in Fig. 10 show that Pure Reactive never completes
the reconfiguration and the DBMS’s throughput is nearly zero. This
is because transactions access tuples uniformly, and thus every trans-
action causes another on-demand pull request to retrieve a sin-
gle tuple at a time. The DBMS’s throughput also drops to nearly
zero with Zephyr+ during the reconfiguration because the parti-
tions on the remaining nodes all try to retrieve data at the same
time. This causes the system to take longer to retrieve the data for
each pull request. Squall alleviates this bottleneck by limiting the
number of concurrent partitions actively involved in the reconfig-
uration through splitting the reconfiguration into many steps. This
results in Squall’s reconfiguration taking approximately 4× longer
than Stop-and-Copy. We contend that this trade-off is acceptable
given that the DBMS is not down for almost 50 seconds during the
reconfiguration. Likewise, we believe that Squall’s consistent per-
formance impact shows that it is well-suited for both load balancing
and contraction reconfigurations that do not have a tight deadline.

0

2000

4000

6000

TP
S Stop-and-Copy

0

2000

4000

6000

TP
S Pure Reactive

0

2000

4000

6000

TP
S Zephyr+

0 20 40 60 80 100 120
Elapsed Time (seconds)

0

2000

4000

6000

TP
S Squall

(a) Throughput (YCSB)

0
100
200
300
400

La
t.

(m
s) Stop-and-Copy

0
100
200
300
400

La
t.

(m
s) Pure Reactive

0
100
200
300
400

La
t.

(m
s) Zephyr+

0 20 40 60 80 100 120
Elapsed Time (seconds)

0
100
200
300
400

La
t.

(m
s) Squall

(b) Latency (YCSB)

Figure 11: Data Shuffling – Every partition either loses 10% of its tuples
to another partition or receives tuples from another partition.

308

50 100 150 200 250 300 350
Time to Reconfigure (seconds)

20
30
40
50
60
70
80

TP
S

 %
 D

ro
p

Figure 12: Duration vs. Degradation – Measuring the mean throughput
percentage decrease while in reconfiguration compared to out of reconfigu-
ration for a YCSB workload contracting the number of nodes. The decrease
in reconfiguration time is controlled by limiting the number of sub-plans
and delay between asynchronous requests.

0 50 100 150 200 250 300 350 400
0

1000
2000
3000
4000

TP
S

16KB

0 50 100 150 200 250 300 350 400
0

1000
2000
3000
4000

TP
S

2MB

0 50 100 150 200 250 300 350 400

Elapsed Time (seconds)

0
1000
2000
3000
4000

TP
S

10MB

0 50 100 150 200 250 300 350 400
0

1000
2000
3000
4000

TP
S

512KB

0 50 100 150 200 250 300 350 400
0

1000
2000
3000
4000

TP
S

5MB

0 50 100 150 200 250 300 350 400

Elapsed Time (seconds)

0
1000
2000
3000
4000

TP
S

20MB

Figure 13: Chunk Size Analysis – The impact of chunk sizes on time to
complete reconfiguration and throughput for YCSB workload.

7.4 Data Shuffling
In this experiment, we evaluate how well the methods are able

to shuffle data between pairs of partitions. This is to simulate mod-
erate data reconfiguration without creating migration dependencies
on a single partition. We again use a YCSB database with 10 mil-
lion tuples evenly split on 16 partitions and execute a workload
that accesses tuples with a uniform distribution. The reconfigura-
tion plan then causes eight pairs of partitions to exchange 10% of
their tuples with each other (i.e., 62,500 tuples per partition).

The throughput and latency measurements in Fig. 11 show that
Stop-and-Copy is able to quickly migrate data in only a few sec-
onds. This downtime may still be unacceptable for highly available
applications: if a system needs “five nines” (99.999%) of uptime,
each week the system can only afford 6 seconds of downtime. As
in Section 7.3, Pure Reactive never completes because of transac-
tions’ uniform access patterns and the overhead of small data pulls.
The DBMS’s performance with Zephyr+ is better than the previ-
ous trials, largely due to the lack of multiple partitions pulling data
from a single partition. Moving data from partition to another is
the ideal case for Zephyr [19]. But again we see that despite re-
quiring longer to complete, Squall only causes a∼10% decrease in
throughput. We explore this issue further in the next experiment.

7.5 Reconfiguration Duration vs. Degradation
The results from the experiments thus far show that there is an in-

herent trade-off in live reconfiguration between reconfiguration du-
ration and performance degradation. One of Squall’s goals is that it
seeks to efficiently amortize the impact of data migration by using
a combination of on-demand data pulls and periodic asynchronous
data pulls. We have tuned Squall to minimize performance impact
for a variety of workloads through the aforementioned parameters.
But if an administrator wants a shorter reconfiguration time, then
they can tune Squall to be more aggressive in moving data at the
cost of a greater disruption in the DBMS’s performance. To better
understand this trade-off, we used the same reconfiguration sce-
nario with the YCSB workload from Section 7.3. We then vary
how quickly Squall completes the reconfiguration by decreasing
the number of sub-plans it generates and the amount of time the
system waits between issuing asynchronous pull requests.

The graph in Fig. 12 shows the reconfiguration duration plotted
against the DBMS’s throughput degradation relative to its through-
put before the reconfiguration starts. As expected, the faster re-
configurations cause a greater drop in performance. This indicates
that a longer reconfiguration time may be preferable for applica-
tions concerned with high availability. One could argue, however,
that there are two downsides to an extended reconfiguration: (1)
snapshots may not be taken while reconfiguration is in progress, so
recovery could take longer in case of failure, and (2) new recon-
figurations may not be started while an existing reconfiguration is
in progress, so the system may take longer to respond to changes
in the workload. We contend that this trade-off is acceptable given
the performance improvement during reconfiguration, and further-
more, we do not consider either of these downsides to be a major
issue. In our experience, most H-Store users rely on replicas for
fault tolerance, and almost never recover from snapshots. Even in
the worst-case scenario where recovery from a snapshot is required,
reconfiguration is not likely to significantly extend the timeline.
Regarding the second potential downside, if the load-balancing al-
gorithm is effective, there should not be a need for frequent recon-
figurations. Even if the system must reorganize the database often,
we do not expect the duration to be an issue as the system con-
troller needs to observe a steady post-reconfiguration state before
load-balancing [38].

7.6 Sensitivity Analysis
Lastly, we evaluate how Squall’s tuning parameters described in

Sections 4 and 5 affect the DBMS’s performance and the length of
the reconfiguration. For all of these experiments, we use the YCSB
workload with the same reconfiguration plan used in Section 7.3
that contracts the cluster from four to three nodes.

We begin with comparing the different maximum chunk sizes
for pull requests. The results in Fig. 13 show that when the chunk
size is 2 MB or less, reconfiguration takes an unacceptably long
time. Above 10 MB, however, the total length of reconfiguration
does not improve significantly and throughput degrades slightly.
For this reason, we select 8 MB as our default chunk size.

Next, we measure Squall’s performance with different settings
for (1) the delay between asynchronous requests and (2) the num-
ber of sub-plans that it generates for a reconfiguration plan. These
are the two settings that have the greatest affect on the DBMS’s
performance during the reconfiguration and the time it takes for
Squall to complete data migration. For the former, the results in
Fig. 14a show that separating asynchronous pulls by 200 ms pro-
vides the best balance of throughput versus reconfiguration time.
In the same way, the results in Fig. 14b show that creating five
sub-plans is the optimal choice for this workload which we set as
our minimum. Although we do not show experiments here due to
space constraints, we found that separating consecutive sub-plans
by 100 ms also achieves this nice balance.

These experiments show that our chosen settings are appropri-
ate for the YCSB workload. We found that they also proved to
be ideal for TPC-C. Depending on the application, administrators
may choose to tune these parameters to further minimize recon-
figuration time at the expense of performance during migration, or
alternatively stretch out the reconfiguration time in order to max-
imize system performance. We defer the problem of automating
this tuning process in Squall as future work.

8. RELATED WORK
There are several existing protocols for migrating data between

non-partitioned DBMSs [18]. The simplest approach, stop-and-
copy, halts all execution on the source node and performs a tuple- or

309

0 50 100 150 200 250 300 350
0

1000
2000
3000
4000

TP
S

100 Milliseconds

0 50 100 150 200 250 300 350
0

1000
2000
3000
4000

TP
S

200 Milliseconds

0 50 100 150 200 250 300 350
0

1000
2000
3000
4000

TP
S

400 Milliseconds

0 50 100 150 200 250 300 350
0

1000
2000
3000
4000

TP
S

800 Milliseconds

0 50 100 150 200 250 300 350

Elapsed Time (seconds)

0
1000
2000
3000
4000

TP
S

1600 Milliseconds

(a) Asynchronous Pull Delays

0 50 100 150 200 250 300 350
0

1000
2000
3000
4000

TP
S

1 Plan

0 50 100 150 200 250 300 350
0

1000
2000
3000
4000

TP
S

2 Sub-Plans

0 50 100 150 200 250 300 350
0

1000
2000
3000
4000

TP
S

4 Sub-Plans

0 50 100 150 200 250 300 350
0

1000
2000
3000
4000

TP
S

5 Sub-Plans

0 50 100 150 200 250 300 350

Elapsed Time (seconds)

0
1000
2000
3000
4000

TP
S

10 Sub-Plans

(b) Number of Sub-plans

Figure 14: Reconfiguration Parameter Analysis – The impact in Squall
on the time to complete reconfiguration and throughput for two parame-
ters: (14a) the delay between asynchronous pulls and (14b) the number of
sub-plans generated. The target workload is YCSB using the cluster con-
solidation plan Section 7.3. The max chunk size is 8 MB.

page-level copy to the destination. All new requests are re-directed
to the destination node. An alternative, flush-and-copy [15], first
flushes dirty records and then marks the source node as read-only
during the migration. Any transaction that performs an update is
restarted at the destination node.

Synchronous migration [18] relies on replication to synchronize
the source and destination. In this migration, the destination is
added as a new eager replica for the source. Depending on the
implementation, a mechanism, such as log shipping or snapshots,
is used to bring the destination “up to speed” with the source. Once
the persistent state of each node is fully synchronized, transactions
are now eagerly committed at source and destination. The source
now can use a fail over mechanism to make the destination the pri-
mary replica and complete the migration process.

Several live migration techniques have been proposed to migrate
databases with minimized interruption of service and downtime.
Designed for systems with shared storage, Albatross [15], copies a
snapshot of transaction state asynchronously to a destination node.
Updates to the source are then iteratively shipped to the destination,
until either a period of no updates arrives or a conditional conver-
gence occurs. A small period of downtime at the source is initiated
while the remaining states are copied to the destination. Slacker [8]
is another approach that is optimized for minimizing the impact of
migration in a multi-tenant DBMS by throttling the rate that pages
are migrated from the source to destination. Slacker uses recovery
mechanisms to stream updates from the source to the destination.
To avoid straining the other tenants at migrating nodes, a PID con-
troller monitors average transaction latency to adjust throttling the
network connection used to stream the updates.

Zephyr [19] allows concurrent execution at the source and des-
tination during migration, without the use of distributed transac-
tions. A wireframe of the database’s schema (e.g., an index’s phys-
ical data structures) are copied to the destination upon initializa-
tion. As transactions at the source node complete, new transactions
are routed to the destination, resulting in concurrent transaction
execution at both nodes. During migration, requests at the desti-
nation that require leaf nodes force a pull on the data page from
the source; any transaction at the source accessing a page that has
been migrated to the destination must restart at the destination. Al-
though Zephyr does not require the nodes to be taken off-line at
any point, it does require that indexes are frozen during migration.

ProRea [35] extends Zephyr’s approach, but it instead proactively
migrates hot tuples to the destination at the start of the migration.

Previous work has also explored live reconfiguration techniques
for partitioned, distributed DBMSs. Wildebeest employs both the
reactive and asynchronous data migration techniques that we use
in Squall but for a distributed MySQL cluster [23]. Minhas et al.
propose a method for VoltDB that uses statically defined virtual
partitions as the granule of migration [28]. This technique was also
explored in other work from the same research group [34].

Intra-machine reconfiguration has been explored in the context
of partitioning data structures between cores to improve concur-
rency [31]. While the goals are similar to Squall, the movement of
data and constraints encountered are drastically different.

NuoDB [4] is a disk-oriented, distributed DBMS that splits all
components of a database (e.g., tables, indexes, meta-data, etc.)
into “atoms” that are spread out across a shared-nothing cluster [30].
For example, tuples for a single table are combined into 50KB
atoms. These atoms then migrate to nodes based on query access
patterns: when a node processes a query, it must retrieve a copy of
the atoms with the data that the query needs to access from a stor-
age node. Over time, the atoms that are used together in the same
transaction will end up on the same executor node. The system
does not need a migration scheme such as Squall, but it is unable
to do fine-grained partitioning.

There are several ways that a DBMS could manage the dynamic
location information of migrating data during a reconfiguration: (1)
a globally consistent tracker that maintains the active owning parti-
tion for migrating data [23], (2) a distributed transaction is invoked
at both potentially owning partitions, (3) transactions are scheduled
at the partition according to the old plan, which tracks modifica-
tions, or (4) transactions are scheduled at the partition according to
the new plan, which reactively pulls data on-demand [19,35]. With
the first option, in a large system with many partitions and tuples,
maintaining a global view of this information of individual tuples at
each partition becomes untenable due to the overhead of commu-
nicating ownership between partitions. Furthermore, the storage
overhead of tracking these tuples can be expensive in a main mem-
ory DBMS, especially if the reconfiguration was initiated because
a node was running out of memory, because an expensive migra-
tion might exacerbate the problem [20]. The second option will
increase latency due to additional nodes being involved in a trans-
action [14] and does nothing to move the migration forward. The
third option has been used in prior live migration solutions [11,15],
but it requires the old node to ship modifications to the new node
and requires a synchronized downtime to transfer ownership and
ship modifications to the new owner.

9. CONCLUSION
We introduced a new approach, called Squall, for fine-grained

reconfiguration of OLTP databases in partitioned, main memory
DBMSs. Squall supports the migration of data between partitions
in a cluster in a transactionally safe manner even in the presence
of distributed transactions. We performed an extensive evaluation
of our approach on a main memory distributed DBMS using OLTP
benchmarks. We compared Squall with a naive stop-and-copy tech-
nique, a pure-reactive reconfiguration, and a reconfiguration similar
to the live-migration technique, Zephyr. The results from our ex-
periments show that while Squall takes longer than the baselines, it
can reconfigure a database with no downtime and a minimal over-
head on transaction latency. The benefits of Squall are most pro-
found when there is a significant amount of data associated with a
single partition attribute or many partitions are migrating data from
a single source.

310

10. REFERENCES
[1] H-Store. http://hstore.cs.brown.edu.
[2] MemSQL. http://www.memsql.com.
[3] MongoDB. http://mongodb.org.
[4] NuoDB. http://www.nuodb.com.
[5] VMware vFabric SQLFire.

http://www.vmware.com/go/sqlfire.
[6] VoltDB. http://www.voltdb.com.
[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. A view of cloud computing. Commun. ACM,
53(4):50–58, Apr. 2010.

[8] S. K. Barker, Y. Chi, H. J. Moon, H. Hacigümüs, and P. J.
Shenoy. "Cut me some slack": latency-aware live migration
for databases. In EDBT, pages 432–443, 2012.

[9] P. A. Bernstein and N. Goodman. Timestamp-based
algorithms for concurrency control in distributed database
systems. In VLDB, pages 285–300, 1980.

[10] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec.,
39:12–27, 2011.

[11] C. Clark et al. Live migration of virtual machines. In NSDI,
pages 273–286, 2005.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In SoCC, pages 143–154, 2010.

[13] J. Cowling and B. Liskov. Granola: low-overhead distributed
transaction coordination. In USENIX ATC, pages 21–34,
June 2012.

[14] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism:
a workload-driven approach to database replication and
partitioning. PVLDB, 3(1):48–57, 2010.

[15] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.
Albatross: Lightweight Elasticity in Shared Storage
Databases for the Cloud using Live Data Migration. PVLDB,
4(8):494–505, May 2011.

[16] D. DeWitt and J. Gray. Parallel database systems: the future
of high performance database systems. Commun. ACM,
35(6):85–98, 1992.

[17] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: Sql
server’s memory-optimized oltp engine. In SIGMOD, pages
1243–1254, 2013.

[18] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Towards
an elastic and autonomic multitenant database. NetDB, 2011.

[19] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr:
Live Migration in Shared Nothing Databases for Elastic
Cloud Platforms. In SIGMOD, pages 301–312, 2011.

[20] N. Folkman. So, that was a bummer. https:
//web.archive.org/web/20101104120513/http://blog.
foursquare.com/2010/10/05/so-that-was-a-bummer/,
October 2010.

[21] T. Haerder and A. Reuter. Principles of transaction-oriented
database recovery. ACM Comput. Surv., 15(4):287–317, Dec.
1983.

[22] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and what
we found there. In SIGMOD, pages 981–992, 2008.

[23] E. P. Jones. Fault-Tolerant Distributed Transactions for
Partitioned OLTP Databases. PhD thesis, MIT, 2011.

[24] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B.
Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a
high-performance, distributed main memory transaction
processing system. PVLDB, 1(2):1496–1499, 2008.

[25] K. Li and J. F. Naughton. Multiprocessor main memory
transaction processing. DPDS, pages 177–187, 1988.

[26] D. B. Lomet, S. Sengupta, and J. J. Levandoski. The bw-tree:
A b-tree for new hardware platforms. In ICDE, pages
302–313, 2013.

[27] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker.
Rethinking main memory oltp recovery. In Data Engineering
(ICDE), 2014 IEEE 30th International Conference on, pages
604–615, March 2014.

[28] U. F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng, and
S. Robertson. Elastic scale-out for partition-based database
systems. In ICDE Workshops, pages 281–288, 2012.

[29] C. N. Nikolaou, M. Marazakis, and G. Georgiannakis.
Transaction routing for distributed OLTP systems: survey
and recent results. Inf. Sci., 97:45–82, 1997.

[30] NuoDB LLC. NuoDB Emergent Architecture – A 21st
Century Transactional Relational Database Founded On
Partial, On-Demand Replication, Jan. 2013.

[31] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. Plp: Page
latch-free shared-everything oltp. In PVLDB, volume 4,
pages 610–621, 2011.

[32] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP
systems. In SIGMOD, pages 61–72, 2012.

[33] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling
for optimizing transaction execution in parallel oltp systems.
Proc. VLDB Endow., 5:85–96, October 2011.

[34] T. Rafiq. Elasca: Workload-aware elastic scalability for
partition based database systems. Master’s thesis, University
of Waterloo, 2013.

[35] O. Schiller, N. Cipriani, and B. Mitschang. Prorea: live
database migration for multi-tenant rdbms with snapshot
isolation. In EDBT, pages 53–64, 2013.

[36] R. Stoica, J. J. Levandoski, and P.-A. Larson. Identifying hot
and cold data in main-memory databases. In ICDE, pages
26–37, 2013.

[37] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The End of an Architectural Era
(It’s Time for a Complete Rewrite). In VLDB, pages
1150–1160, 2007.

[38] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore,
A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store:
Fine-grained elastic partitioning for distributed transaction
processing. Proc. VLDB Endow., 8:245–256, November
2014.

[39] The Transaction Processing Performance Council. TPC-C
benchmark (Version 5.10.1), 2009.

[40] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases. In
SOSP, pages 18–32, 2013.

[41] A. Whitney, D. Shasha, and S. Apter. High Volume
Transaction Processing Without Concurrency Control, Two
Phase Commit, SQL or C++. In HPTS, 1997.

311

http://hstore.cs.brown.edu
http://www.memsql.com
http://mongodb.org
http://www.nuodb.com
http://www.vmware.com/go/sqlfire
http://www.voltdb.com
https://web.archive.org/web/20101104120513/http://blog.foursquare.com/2010/10/05/so-that-was-a-bummer/
https://web.archive.org/web/20101104120513/http://blog.foursquare.com/2010/10/05/so-that-was-a-bummer/
https://web.archive.org/web/20101104120513/http://blog.foursquare.com/2010/10/05/so-that-was-a-bummer/

APPENDIX
A. CORRECTNESS

Transaction execution in a partitioned main-memory database
provides correctness by ensuring that a single partition executor
(transaction manager) is exclusively responsible for a set of tuples
and transactions on these tuples execute in a serial order. Dis-
tributed transactions effectively lock each partition executor so that
transactions can be executed using two-phase commit with exclu-
sive access. The exclusive data access on a set of tuples with se-
rial execution ensures that phantoms are not possible and transac-
tions are serializable. Let x be the set of tuples that correspond
to a single reconfiguration range, or the set of tuples from a sin-
gle relation scheduled to move between partitions, identified by a
range of partition keys (e.g. W_ID > 3 and W_ID < 5). Without loss
of generality x can be a single tuple for a single partitioning key
(e.g. a warehouse tuple with W_ID = 4). Let the current partition
plan be i, and the previous partition plan be i − 1. Let the logical
owner of x in the partition plan i be some partition pn ∈ P , deter-
mined by a function Oi(x) → pn. Since reconfigurations are not
executed as atomic transactions and migrating data may be broken
into chunks, the previous owning partition Oi−1(x) may physically
have none, some, or all of the tuples in x. Therefore, a partition pn
can check if it physically owns x at any given time by the function
C(x, pn) → (true, partial, false). Only a partition that physi-
cally owns x can execute a transaction that reads or writes tuples in
x, regardless of whether another partition expects to own the tuple
according to Oi. This leads us to following axiom.

AXIOM 1. A partition pn can read or write x if (Oi(x) = pn∨
Oi−1(x) = pn) ∧ C(x, pn) = true.

In the following discussion, we say that data is extracted from
the source partition ps and loaded into the destination partition pd.

A partition ps marks its physical ownership of x as false or
partial as soon as the migration process fully or partially extracts
x from ps. Conversely, a partition pd only marks ownership of x
as true once the migration process has finished loading every tuple
in x into pd. Since transaction execution and migration extraction
operations are executed serially, a transaction can never execute on
ps at the same time as migrating data is being extracted. However,
data can be loaded while a transaction is blocked for data migration
on pd. This provides us with the following axiom.

AXIOM 2. Data extraction (may change the value of C(x, ps))
and transaction execution are mutually exclusive.

During reconfiguration, migrating tuples can temporarily be in
“flight” or in a queue at the destination partition (Oi(x)), no two
partitions can ever concurrently have physical ownership of x. This
means there can be a period of time where no partition physically
owns x, however in this scenario no partition can execute a transac-
tion involving x until the tuples are fully loaded. Axiom 2 provides
us with the following lemmas.

LEMMA 1. (Oi−1(x) = ps) ∧ (Oi(x) = pd) ∧ (ps 6= pd) ∧
(C(x, ps) = partial) =⇒ C(x, pd) ∈ {partial, false}

LEMMA 2. (Oi−1(x) = ps) ∧ (Oi(x) = pd) ∧ (ps 6= pd) ∧
(C(x, ps) = false) =⇒ C(x, pd) ∈ {true, partial, false}

LEMMA 3. (Oi−1(x) = ps) ∧ (Oi(x) = pd) ∧ (ps 6= pd) ∧
(C(x, ps) = true) =⇒ C(x, pd) = false

Using these lemmas it can be shown that at all times a set of
tuples x are physically owned by at most one partition. Further-
more, a user transaction T cannot read or write tuples belong-
ing to x unless x is physically owned by a partition. Any re-
configuration (or migration event) of x with respect to T will ei-
ther completely follow or precede T . By Axiom 1 we know a
transaction cannot operate on x without fully owning the set, and
therefore a phantom problem could only arise if some tuples in
x were extracted during transaction execution. By way of con-
tradiction, suppose that a transaction starts at ps which owns x
(C(x, ps) = true), but by commit time, ps has lost some or all
the tuples in x (C(x, ps) ∈ {partial, false}). This would mean
that the migration extraction was concurrent with the transaction,
which contradicts Axiom 2. Additionally, Squall is not susceptible
to lost updates as a record in x could only be inserted or updated
by the owning partition by Axiom 1. This establishes that there are
no phantom or lost update problems with Squall.

Since transactions and migration extractions are mutually exclu-
sive and serially executed, we cannot have any other cyclic con-
flict dependencies between transactions involving migrations. A
cycle in a conflict dependency graph would mean that transaction
execution had an extraction included which cannot happen by Ax-
iom 2. Therefore, we can assert that transaction execution remains
serializable with Squall. It is worth noting that in some cases a
distributed transaction that triggers a pull request between subordi-
nates can cause a deadlock, depending on how partition locks are
acquired. After the distributed transaction aborts, due to transaction
order the migration pull is resolved before the distributed transac-
tion restarts and hence avoiding livelock.

With regard to fault-tolerance, Squall is safe and will make progress
if all failures are such that for every partition node only loses the
primary replica or secondary replica(s). As described in Section 6.1,
if partition fails, a replica partition can seamlessly resume the re-
configuration due to synchronously replicating the state and data
of migrating tuples. If for a partition both the primary and the sec-
ondary replicas fails or if the entire cluster crashes, Squall will have
to wait until the recovery of “last node to fail” for the reconfig-
uration to complete the reconfiguration. Otherwise the Squall is
blocked.

B. EVALUATING OPTIMIZATIONS
Fig. 15 shows how the optimizations discussed in Section 5 work

together to improve Squall’s performance during reconfiguration.
With none of the optimizations, throughput during reconfiguration
is not much better than the baseline approaches discussed in Sec-
tion 7 – which benefit from Squall’s sizing and migration schedul-
ing. Likewise, each individual optimization provides limited im-
provement beyond the unoptimized system. But by combining the
optimizations, we show in Fig. 15 how they build upon each other
to help Squall reconfigure the system with minimal impact on per-
formance.

For example, the eager pull mechanism discussed in Section 5.3
will not perform well if the reconfiguration ranges are too large or
too small. But by combining it with the range splitting and merg-
ing optimizations from Sections 5.1 and 5.2, we can ensure that
the sizes of the reconfiguration ranges are optimal for eager pulls.
Splitting the reconfiguration plan into several smaller plans as de-
scribed in Section 5.4 serves to keep any single partition from be-
coming a bottleneck, and as a result further improves throughput
during reconfiguration.

312

0 50 100 150 200 250 300
0

5000

10000

TP
S

Non-Optimized

0 50 100 150 200 250 300
0

5000

10000

TP
S

Eager Pull

0 50 100 150 200 250 300
0

5000

10000

TP
S

Split/Merge

0 50 100 150 200 250 300
0

5000

10000

TP
S

Split/Merge/Eager Pull

0 50 100 150 200 250 300

Elapsed Time (seconds)

0

5000

10000

TP
S

Split/Merge/Eager Pull/Sub-Plan

Figure 15: A demonstration of how each optimization discussed in Sec-
tion 5 improves transaction throughput during reconfiguration. This shows
the impact of the optimizations when the system contracts from 4 servers to
3 under a high throughput YCSB workload.

C. ALTERNATIVE PARTITIONING SCHEMES
Our current implementation of Squall assumes that the DBMS

uses range-based partitioning to horizontally split tables. It is non-

trivial to extend it to work with alternative partitioning schemes,
such as hash and round-robin partitioning. The major difference,
however, is that under these schemes the source partitions would
be responsible for determining which tuples will migrate for a re-
configuration during the initialization phase. This is because it is
the only place in the system that knows what data it has. After the
source partition computes this information, it is sent to the leader
as part of the acknowledgement that the partition is ready to pro-
ceed with the reconfiguration. The leader node then disseminates
this this information to all partitions with the acknowledgment that
reconfiguration is starting. With this, each partition build the list of
their expected incoming tuples. This process is less efficient than
our range-based scheme used in this paper because it requires that
the partitions check all of their tuples to determine if they are to
be moved. Using extensible or consistent hashing can reduce the
number of tuples that need to be checked but would still require
more than our approach.

D. ACKNOWLEDGEMENTS
This work was partially funded by the NSF under the IIS-1018637

grant and QCRI under the QCRI-CSAIL partnership. We would
like to thank the reviewers, whose feedback significantly improved
the paper. We also thank Ken Salem, Ashraf Aboulnaga, Marco
Serafini, Essam Mansour, Jennie Duggan, Mike Stonebraker, and
Sam Madden for their suggestions and feedback. Andy sends big
ups to the Brown DB squadron, especially Kaiser Kraska, L.T.D.
Ugur, and Big Steezy Z.

313

	Introduction
	Background
	H-Store Architecture
	Database Partitioning
	The Need for Live Reconfiguration

	Overview of SQUALL
	Initialization
	Data Migration
	Termination

	Managing Data Migration
	Identifying Migrating Data
	Tracking Reconfiguration Progress
	Identifying Data Location
	Reactive Migration
	Asynchronous Migration

	Optimizations
	Range Splitting
	Range Merging
	Pull Prefetching
	Splitting Reconfigurations

	Fault Tolerance
	Failure Handling
	Crash Recovery

	Experimental Evaluation
	Workloads
	Load Balancing
	Cluster Consolidation
	Data Shuffling
	Reconfiguration Duration vs. Degradation
	Sensitivity Analysis

	Related Work
	Conclusion
	References
	Correctness
	Evaluating Optimizations
	Alternative Partitioning Schemes
	Acknowledgements

