
Reducing the Storage Overhead of
Main-Memory OLTP Databases with Hybrid Indexes

Huanchen Zhang David G. Andersen Andrew Pavlo
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

huanche1@cs.cmu.edu dga@cs.cmu.edu pavlo@cs.cmu.edu

Michael Kaminsky Lin Ma Rui Shen
Intel Labs Carnegie Mellon University VoltDB

michael.e.kaminsky@intel.com lin.ma@cs.cmu.edu rshen@voltdb.com

ABSTRACT
Using indexes for query execution is crucial for achieving high per-
formance in modern on-line transaction processing databases. For
a main-memory database, however, these indexes consume a large
fraction of the total memory available and are thus a major source
of storage overhead of in-memory databases. To reduce this over-
head, we propose using a two-stage index: The first stage ingests
all incoming entries and is kept small for fast read and write opera-
tions. The index periodically migrates entries from the first stage to
the second, which uses a more compact, read-optimized data struc-
ture. Our first contribution is hybrid index, a dual-stage index archi-
tecture that achieves both space efficiency and high performance.
Our second contribution is Dual-Stage Transformation (DST), a
set of guidelines for converting any order-preserving index struc-
ture into a hybrid index. Our third contribution is applying DST to
four popular order-preserving index structures and evaluating them
in both standalone microbenchmarks and a full in-memory DBMS
using several transaction processing workloads. Our results show
that hybrid indexes provide comparable throughput to the original
ones while reducing the memory overhead by up to 70%.

1. INTRODUCTION
Main-memory database management systems (DBMSs) target on-
line transaction processing (OLTP) workloads that require high thr-
oughput and low latency—performance that is only available if the
working set fits in memory. Although the price of DRAM has
dropped significantly in recent years, it is neither free nor infinite.
Memory is a non-trivial capital cost when purchasing new equip-
ment, and it incurs real operational costs in terms of power con-
sumption. Studies have shown that DRAM can account for up to
40% of the overall power consumed by a server [36].

Improving memory efficiency in a DBMS, therefore, has two
benefits. First, for a fixed working set size, reducing the required
memory can save money, both in capital and operating expendi-
tures. Second, improving memory efficiency allows the DBMS to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
Copyright 2016 ACM 978-1-4503-3531-7/16/06 ...$15.00.
http://dx.doi.org/10.1145/2882903.2915222

keep more data resident in memory. Higher memory efficiency al-
lows for a larger working set, which enables the system to achieve
higher performance with the same hardware.

Index data structures consume a large portion of the database’s
total memory—particularly in OLTP databases, where tuples are
relatively small and tables can have many indexes. For example,
when running TPC-C on H-Store [33], a state-of-the-art in-memory
DBMS, indexes consume around 55% of the total memory. Freeing
up that memory can lead to the above-mentioned benefits: lower
costs and/or the ability to store additional data. However, simply
getting rid of all or part of the indexes is suboptimal because in-
dexes are crucial to query performance.

This paper presents hybrid index, a dual-stage index architec-
ture that substantially reduces the per-tuple index space with only
modest costs in throughput and latency (and, indeed, is actually
faster for some workloads) even when the reclaimed memory is not
exploited to improve system performance. Although the idea of
using multiple physical data structures to construct a logical entity
has been explored before [4, 28, 29, 43, 44, 47], to the best of our
knowledge, we are the first to show the benefits of applying it to
indexes in main-memory OLTP DBMSs.

The dual-stage architecture maintains a small dynamic “hot” store
to absorb writes and a more compact, but read-only store to hold the
bulk of index entries. Merge between the stages is triggered peri-
odically and can be performed efficiently. Unlike prior work [20,
35, 39, 47, 53], our design offers low latency and high throughput
for the point queries and short-range scans that typify the OLTP
workloads used with main-memory databases [34, 50].

Hybrid index leverages the skew typically found in OLTP work-
loads. This skew manifests itself with respect to item popular-
ity [23, 49]: certain data items are accessed more often than oth-
ers and thus are more likely to be accessed again in the near fu-
ture. This observation has been used extensively to move cold data
from memory to block-based storage [23, 27, 48], and to store data
efficiently by compressing the cold data in a main-memory data-
base [29]. To our knowledge, however, previous work has not
exploited skew to shrink the indexes themselves, particularly for
purely in-memory structures. Because the indexes can take more
than half the memory for an OLTP workload, doing so has the
potential to save a considerable amount of still-expensive DRAM
without significant performance penalty.

To facilitate building hybrid indexes, we provide Dual-Stage
Transformation (DST), a set of guidelines that can convert any
order-preserving index structure to a hybrid index. We applied DST
to four order-preserving index structures: B+tree, Masstree [41],
Skip List [46], and ART [37]. Using both YCSB-based microbench-

Primary Secondary
Tuples Indexes Indexes

TPC-C 42.5% 33.5% 24.0%
Articles 64.8% 22.6% 12.6%
Voter 45.1% 54.9% 0%

Table 1: Percentage of the memory usage for tuples, primary indexes, and
secondary indexes in H-Store using the default indexes (DB size ≈ 10 GB).

marks and by integrating them into the H-Store OLTP DBMS [33],
we find that hybrid indexes meet the goals, achieving performance
comparable to the original indexes while reducing index memory
consumption by up to 70% (Section 6). Also, by using hybrid in-
dexes, H-Store is able to sustain higher throughput for OLTP work-
loads for more transactions and with fewer performance interrup-
tions due to memory limitations (Section 7).

The contributions of this paper are as follows. First, we propose
hybrid index, a dual-stage index architecture that can improve the
memory efficiency of indexes in main-memory OLTP databases.
Second, we introduce DST, a set of guidelines that includes a sim-
ple dynamic-to-static transformation to help design hybrid indexes
from existing index data structures. Third, we applied DST to four
index structures and show the effectiveness and generality of our
method. Finally, the dual-stage architecture provides the opportu-
nity to use compact/compressed static data structures (e.g., succinct
data structures [32]) for database indexing.

2. THE CASE FOR HYBRID INDEXES
The overhead of managing disk-resident data has given rise to a
new class of OLTP DBMSs that store the entire database in main
memory [24, 25, 28, 50]. These systems outperform traditional
disk-oriented DBMSs because they eschew the legacy components
that manage data stored on slow, block-based storage [30]. Unfor-
tunately, this improved performance is achievable only when the
database is smaller than the amount of physical memory available
in the system. If the database does not fit in memory, then the op-
erating system will move virtual memory pages out to disk, and
memory accesses will cause page faults [48]. Because these page
faults are transparent to the DBMS, the threads executing transac-
tions will stall while the page is fetched from disk, degrading the
system’s throughput and responsiveness. Thus, the DBMS must
use memory efficiently to avoid this performance bottleneck.

Indexes are a major factor in the memory footprint of a database.
OLTP applications often maintain several indexes per table to en-
sure that queries execute quickly. This is important in applications
that interact with users and other external systems where transac-
tions must complete in milliseconds [50]. These indexes consume
a significant fraction of the total memory used by a database. To
illustrate this point, Table 1 shows the relative amount of storage
used for indexes in several OLTP benchmarks deployed in a main-
memory DBMS [3]. We used the DBMS’s internal statistics API to
collect these measurements after running the workloads on a single
node until the database size ≈ 10 GB. Indexes consume up to 58%
of the total database size for these benchmarks, which is commen-
surate with our experiences with real-world OLTP systems.

Designing memory-efficient indexes is thus important for im-
proving database performance and reducing costs. Achieving space-
efficient indexes is, however, non-trivial because there are trade-
offs between function, performance, and space. For example, hash
tables are fast and potentially more space-efficient than tree-based
data structures, but they do not support range queries, which pre-
vents them from being ubiquitous.

A common way to reduce the size of B+trees is to compress their
nodes before they are written to disk using a general-purpose com-

pression algorithm (e.g., LZMA) [8]. This approach reduces the
I/O cost of fetching pages from disk, but the nodes must be decom-
pressed once they reach memory so that the system can interpret
their contents. To the best of our knowledge, the only compressed
main-memory indexes are for OLAP systems, such as bitmap [20]
and columnar [35] indexes. These techniques, however, are inap-
propriate for the write-heavy workload mixtures and small-footprint
queries of OLTP applications [50]. As we show in Section 6, com-
pressed indexes perform poorly due to the overhead of decompress-
ing an entire block to access a small number of tuples.

An important aspect of these previous approaches is that the in-
dexes treat all of the data in the underlying table equally. That is,
they assume that the application will execute queries that access
all of the table’s tuples in the same manner, either in terms of fre-
quency (i.e., how many times it will be accessed or modified in the
future) or use (i.e., whether it will be used most in point versus
range queries). This assumption is incorrect for many OLTP ap-
plications. For example, a new tuple is likely to be accessed more
often by an application soon after it was added to the database, of-
ten through a point query on the index. But as the tuple ages, its
access frequency decreases. Later, the only time it is accessed is
through summarization or aggregation queries.

One could handle this scenario through multiple partial indexes
on the same keys in a table that use different data structures. There
are several problems with this approach beyond just the additional
cost of maintaining more indexes—foremost is that developers might
need to modify their application so that each tuple specifies what
index it should be stored in at runtime. This information is neces-
sary because some attributes, such as a tuple’s creation timestamp,
may not accurately represent how likely it will be accessed in the
future. Second, the DBMS’s query optimizer might not be able to
infer what index to use for a query since a particular tuple’s index
depends on this identifying value. If a complex query accesses tu-
ples from multiple partial indexes that each has a portion of the
table’s data, then the system will need to retrieve data from multi-
ple sources for that query operator. This type of query execution
is not possible in today’s DBMSs, so the system would likely fall
back to scanning the table sequentially.

We argue that a better approach is to use a single logical hybrid
index that is composed of multiple data structures. This approach
gives the system more fine-grained control over data storage with-
out requiring changes to the application. To the rest of the DBMS,
a hybrid index looks like any other, supporting a conventional in-
terface and API. Previous work showed the effectiveness of using
multiple physical data structures or building blocks to construct a
higher-level logical entity. Most notable are log-structured merge-
trees [44]. More recent examples include SILT [39], a flash-based
key-value store that achieves both memory-efficiency and high-
performance by combining three basic stores with different opti-
mization focuses to effectively overcome each others’ deficiencies.
Anvil [40] offers a toolkit for building database backends out of
specialized storage modules, each of which is optimized for dif-
ferent workload objectives. OctopusDB [26] and WiredTiger [17]
take a similar approach, but at a table-level granularity.

Applying these ideas to database indexes is a natural fit, espe-
cially for in-memory OLTP systems. In these applications, trans-
actions’ access patterns vary over time with respect to age and use.
Index entries for new tuples go into a fast, write-friendly data struc-
ture since they are more likely to be queried again in the near fu-
ture. Over time, the tuples become colder and their access patterns
change, usually from frequent modification to occasional read [23].
Aged tuples thus eventually migrate to a more read-friendly and
more compact data structure to save space [47].

Dynamic Stage Static Stage

Bloom Filter

mergeX Compact X

read

insert

read/delete

update/delete

Figure 1: Dual-Stage Hybrid Index Architecture – All writes to the index
first go into the dynamic stage. As the size of the dynamic stage grows, it
periodically merges older entries to the static stage. For a read request, it
searches the dynamic stage and the static stage in sequence.

Given this, we present our dual-stage architecture for hybrid in-
dexes in the next section. Section 4 introduces a set of transforma-
tion guidelines for designing compact, read-optimized data struc-
tures. Section 5 discusses the techniques for migrating data be-
tween stages.

3. THE DUAL-STAGE ARCHITECTURE
As shown in Figure 1, the dual-stage hybrid index architecture is
comprised of two stages: the dynamic stage and the static stage.
New entries are added to the dynamic stage. This stage is kept
small so that queries to the most recent entries, which are likely
to be accessed and modified in the near future, are fast. As the
size of the dynamic stage grows, the index periodically triggers the
merge process and migrates aged entries from its dynamic stage to
the static stage which uses a more space-efficient data structure to
hold the bulk of the index entries. The static stage does not support
direct key additions or modifications. It can only incorporate key
updates in batches through the merge process.

A hybrid index serves read requests (point queries, range queries)
by searching the stages in order. To speed up this process, it main-
tains a Bloom filter for the keys in the dynamic stage so that most
point queries search only one of the stages. Specifically, for a read
request, the index first checks the Bloom filter. If the result is posi-
tive, it searches the dynamic stage and the static stage (if necessary)
in sequence. If the result is negative, the index bypasses the dy-
namic stage and searches the static stage directly. The space over-
head of the Bloom filter is negligible because the dynamic stage
only contains a small subset of the index’s keys.

A hybrid index handles value updates differently for primary and
secondary indexes. To update an entry in a primary index, a hybrid
index searches the dynamic stage for the entry. If the target en-
try is found, the index updates its value in place. Otherwise, the
index inserts a new entry into the dynamic stage. This insert ef-
fectively overwrites the old value in the static stage because subse-
quent queries for the key will always find the updated entry in the
dynamic stage first. Garbage collection for the old entry is post-
poned until the next merge. We chose this approach so that recently
modified entries are present in the dynamic stage, which speeds up
subsequent accesses. For secondary indexes, a hybrid index per-
forms value updates in place even when the entry is in the static
stage, which avoids the performance and space overhead of having
the same key valid in both stages.

For deletes, a hybrid index first locates the target entry. If the
entry is in the dynamic stage, it is removed immediately. If the
entry is in the static stage, the index marks it “deleted” and removes
it at the next merge. Again, depending on whether it is a unique
index or not, the DBMS may have to check both stages for entries.

This dual-stage architecture has two benefits over the traditional
single-stage indexes. First, it is space-efficient. The periodically-
triggered merge process guarantees that the dynamic stage is much

smaller than the static stage, which means that most of the entries
are stored in a compact data structure that uses less memory per
entry. Second, a hybrid index exploits the typical access patterns in
OLTP workloads where tuples are more likely to be accessed and
modified soon after they were added to the database (Section 2).
New entries are stored in the smaller dynamic stage for fast reads
and writes, while older (and therefore unchanging) entries are mi-
grated to the static stage only for occasional look-ups.

More importantly, the dual-stage architecture opens up the possi-
bility of using compact/compressed static data structures that have
not yet been accepted for database indexing, especially in OLTP
databases. These data structures, including succinct data struc-
tures for example, provide excellent compression rates but suffer
the drawback of not being able to support dynamic operations such
as inserts and updates efficiently. A hybrid index can use these
specialized data structures in its static stage—leveraging their com-
pression to gain additional memory efficiency while amortize their
performance impact by applying updates in batches. This paper
examines several general purpose data structures, but we leave ex-
ploration of more esoteric data structures as future work.

To facilitate using the dual-stage architecture to build hybrid in-
dexes, we provide the following Dual-Stage Transformation (DST)
guidelines for converting any order-preserving index structure to a
corresponding hybrid index:

• Step 1: Select an order-preserving index structure (X) that
supports dynamic operations efficiently for the dynamic stage.

• Step 2: Design a compact, read-optimized version of X for the
static stage.

• Step 3: Provide a merge routine that can efficiently migrate
entries from X to compact X.

• Step 4: Place X and compact X in the dual-stage architecture
as shown in Figure 1.

We describe the process to accomplish Step 2 of DST in the next
section. We note that these steps are a manual process. That is,
a DBMS developer would need to convert the index to its static
version. Automatically transforming any arbitrary data structure is
outside the scope of this paper.

4. DYNAMIC-TO-STATIC RULES
As described in Section 3, the static stage is where the index stores
older entries in a more memory-efficient format. The cost of this
efficiency is that the set of keys in the data structure cannot change.
The only way to add new entries is to rebuild the data structure.

The ideal data structure for the static stage must have three prop-
erties: First, it must be memory-efficient (i.e., have low space over-
head per entry). Second, it must have good read performance for
both point queries and range queries. This is particularly important
for primary indexes where guaranteeing key uniqueness requires
checking the static stage for every insert. Third, the data structure
must support merging from the dynamic stage efficiently. This not
only means that the merge process is fast, but also that the tempo-
rary memory use is low. These three properties have trade-offs, and
it is difficult to achieve all three in a single data structure (e.g., more
compact data structures are usually slower). Our design, therefore,
aims to strike a balance; alternate application-specific two-stage
designs that make a different trade-off are possible.

Although any data structure with the above properties can be
used in the static stage, using one that inter-operates well with dy-
namic stage’s index simplifies the design and improves merge per-
formance. Therefore, we present the Dynamic-to-Static (D-to-S)

Original Compaction Structural Reduction Compression

B
+t

re
e …

…
empty space

…
…

fewer nodes

…
… …

…
compressed node

Node Cache
M

as
st

re
e

Trie
Level 0

Trie
Level 1

…
…
…

B+tree

V1 V2 V3

B+tree B+tree

Trie
Level 0

Trie
Level 1

…
…
…

B+tree

V1 V2 V3

B+tree B+tree

V1 V2 V3

Sorted Arrays

…

Sorted
Arrays

Sorted
Arrays

Trie
Level 0

Trie
Level 1

Trie
Level 0

Trie
Level 1

…
…
…

B+tree

V1 V2 V3

B+tree B+tree

Node Cache

Sk
ip

L
is

t

…

…

…

…

…

…

…

…

…

…

…

…
Node Cache

A
R

T …
…

key pointer/
value

…
…

…
…

Node Cache

…
…

Figure 2: Examples of Applying the Dynamic-to-Static Rules – Solid arrows are pointers; dashed arrows indicate that the child node location is calculated
rather than stored in the structure itself. The second column shows the starting points: the original dynamic data structures. After applying the Compaction
Rule, we get intermediate structures in column three. We then applied the Structural Reduction Rule on those intermediate structures and obtain more compact
final structures in column four. Column five shows the results of applying the Compression Rule, which is optional depending on workloads.

rules to help convert a dynamic stage data structure to a smaller,
immutable version for use in the static stage.

The crux of the D-to-S process is to exploit the fact that the static
stage is read-only and thus extra space allocated for efficient dy-
namic operations can be removed from the original structure. We
observe two major sources of wasted space in dynamic data struc-
tures. First, dynamic data structures allocate memory at a coarse
granularity to minimize the allocation/reallocation overhead. They
usually allocate an entire node or memory block and leave a sig-
nificant portion of that space empty for future entries. Second, dy-
namic data structures contain a large number of pointers to support
fast modification of the structures. These pointers not only take up
space but also slow down certain operations due to pointer-chasing.

Given a dynamic data structure, the D-to-S rules are:

• Rule #1: Compaction – Remove duplicated entries and make
every allocated memory block 100% full.

• Rule #2: Structural Reduction – Remove pointers and struc-
tures that are unnecessary for efficient read-only operations.

• Rule #3: Compression – Compress parts of the data structure
using a general purpose compression algorithm.

A data structure created by applying one or more of these rules is
a good data structure for the static stage. First, it is more memory-
efficient than the dynamic stage’s index. Second, the data struc-
ture preserves the “essence” of the original index (i.e., it does not
fundamentally change its core design). This is important because
applications sometimes choose certain index structures for certain
workload patterns. For example, one may want to use a trie-based
data structure to efficiently handle variable-length keys that have
common prefixes. After applying the D-to-S rules, a static trie is

still a trie. Moreover, the similarity between the original and the
compact structure enables an efficient merge routine to be imple-
mented and performed without significant space overhead.

In the rest of this section, we describe how to apply the D-to-S
rules to create static versions of four different indexes.

4.1 Example Data Structures
We briefly introduce the data structures that we applied the D-to-S
rules on. Their structures are shown in Figure 2.

B+tree: The B+tree is the most common index structure that
is used in almost every OLTP DBMS [21]. It is a self-balancing
search tree, usually with a large fanout. Although originally de-
signed for disk-oriented databases to minimize disk seeks, B+trees
have maintained their prevalence in the main-memory DBMSs (Ap-
pendix A). For our analysis, we use the STX B+tree [19] as our
baseline implementation. We found in our experiments that a node
size of 512 bytes performs best for in-memory operations.

Masstree: Masstree [41] is a high-performance key-value store
that also supports range queries. Masstree combines B+trees and
tries to speed up key searches. The trie design makes the index
particularly efficient in terms of both performance and space when
handling keys with shared prefixes. In the diagram shown in Fig-
ure 2, the dashed rectangles in Masstree represent the individual
B+trees that conceptually form a trie. The keys are divided into
fixed-length 8-byte keyslices and are stored at each trie level. Unique
key suffixes are stored separately in a structure called a keybag.
Each B+tree leaf node has an associated keybag with a maximum
capacity equal to the fanout of the B+tree. A value pointer in a

key
1 2 n …

child
1 2 n …

1 2 256 …
child

3

child index
1 2 256 … 1 2 n …

child
3

1 2 n

Layout 1

Layout 2

Layout 3

Figure 3: ART Node Layouts – Organization of the ART index nodes. In
Layout 1, the key and child arrays have the same length and the child point-
ers are stored at the corresponding key positions. In Layout 2, the current
key byte is used to index into the child array, which contains offsets/indexes
to the child array. The child array stores the pointers. Layout 3 has a single
256-element array of child pointers as in traditional radix trees [37].

leaf node can point to either a data record (when the corresponding
keyslice is uniquely owned by a key), or a lower-level B+tree.

Skip List: The Skip List was introduced in 1990 as an alternative
to balanced trees [46]. It has recently gained attention as a lock-
free index for in-memory DBMSs [45]. The internal structure of
the index is a linked hierarchy of subsequences that is designed
to “skip” over fewer elements. The algorithms for insertion and
deletion are designed to be more simple and potentially faster than
equivalent operations in balanced trees. For our analysis, we use
an implementation [2] of a variation of Skip List (called a paged-
deterministic Skip List [42]) that resembles a B+tree.

Adaptive Radix Tree: The Adaptive Radix Tree (ART) [37]
is a fast and space-efficient data structure designed for in-memory
databases. ART is a 256-way radix tree (i.e., each level represents
one byte of the key). Unlike traditional radix trees (or tries) where
each node is implemented as a fixed-size (256 in this case) array of
child pointers, ART uses four node types (Node4, Node16, Node48,
and Node256) with different layouts and capacities adaptively to
achieve better memory efficiency and better cache utilization. Fig-
ure 3 illustrates the three node layouts used in ART. Node4 and
Node16 use the representation in Layout 1 with n=4, 16, respec-
tively. Node48 uses Layout 2 (n=48), and Node256 uses Layout 3.

4.2 Rule #1: Compaction
This first rule seeks to generate a more efficient layout of an in-
dex’s entries by minimizing the number of memory blocks allo-
cated. This rule includes two steps. The first is to remove duplicate
content. For example, to map multiple values to a single key (for
secondary indexes), dynamic data structures often store the same
key multiple times with different values. Such key duplication is
unnecessary in a static data structure because the number of values
associated with each key is fixed. The second step is to fill all al-
located memory blocks to 100% capacity. This step may include
modifications to the layouts of memory blocks/nodes. Memory al-
location is done at a fine granularity to eliminate gaps between en-
tries; furthermore, leaving spacing for future entries is unnecessary
since the data structure is static. The resulting data structure thus
uses fewer memory blocks/nodes for the same entries.

As shown in Figure 2, a major source of memory waste in a
B+tree, Masstree, Skip List, or ART is the empty space in each
node. For example, the expected node occupancy of a B+tree is
only 69% [54]. We observed similar occupancies in the Masstree
and Skip List. For ART, our results show that its node occupancy

* *

key length …
… keyslice

… key suffix
offset

key suffix
…

… value ptr

Primary: value pointer points to a database tuple: *tuple

Secondary: value pointer points to a value array: header	 …*tuple	 *tuple	

Figure 4: Compact Masstree – The internal architecture of the Masstree
index after applying the Compaction and Structural Reduction Rules.

is only 51% for 50 million 64-bit random integer keys. This empty
space is pre-allocated to ingest incoming entries efficiently with-
out frequent structural modifications (i.e., node splits). For B+tree,
Masstree and Skip List, filling every node to 100% occupancy, as
shown in Figure 2 (column 3), reduces space consumption by 31%
on average without any structural changes to the index itself.

ART’s prefix tree structure prevents us from filling the fixed-
sized nodes to their full capacity. We instead customize the size
of each node to ensure minimum slack space. This is possible be-
cause the content of each node is fixed and known when building
the static structure. Specifically, let n denote the number of key-
value pairs in an ART node (2 ≤ n ≤ 256). We choose the most
space-efficient node layout in Figure 3 based on n. If n ≤ 227,
Layout 1 with array length n is used; otherwise, Layout 3 is used.

Because of the multi-structure design, compacting Masstree’s
memory blocks is a more complicated process: both its internal
nodes and its dynamically-allocated keybags for suffixes require
modification. We found that the original implementation of Masstree
allocates memory for the keybags aggressively, which means that
it wastes memory. Thus, for this rule, we instead only allocate the
minimum memory space to store these suffixes.

For secondary indexes where a key can map to multiple values,
the only additional change to the indexes is to remove duplicated
entries by storing each key once followed by an array of its associ-
ated values.

4.3 Rule #2: Structural Reduction
The goal of this next rule is to minimize the overhead inherent in
the data structure. This rule includes removing pointers and other
elements that are unnecessary for read-only operations. For ex-
ample, the pointers in a linked list are designed to allow for fast
insertion or removal of entries. Thus, removing these pointers and
instead using a single array of entries that are stored contiguously
in memory saves space and speeds up linear traversal of the index.
Similarly, for a tree-based index with fixed node sizes, we can store
the nodes contiguously at each level and remove pointers from the
parent nodes to their children. Instead, the location of a particular
node is calculated based on in-memory offsets. Thus, in exchange
for a small CPU overhead to compute the location of nodes at run-
time we achieve memory savings. Besides pointers, other redun-
dancies include auxiliary elements that enable functionalities that
are unnecessary for static indexes (e.g., transaction metadata).

We applied this rule to our four indexes. The resulting data struc-
tures are shown in Figure 2 (column four). We note that after the
reduction, the nodes in B+tree, Masstree, and Skip List are stored
contiguously in memory. This means that unnecessary pointers
are gone (dashed arrows indicate that the child nodes’ locations in

memory are calculated rather than stored). For ART, however, be-
cause its nodes have different sizes, finding a child node requires a
“base + offset” or similar calculation, so the benefit of storing nodes
contiguously is not clear. We, therefore, keep ART unchanged here
and leave exploring other layouts as future work.

There are additional opportunities for reducing the space over-
head with this rule. For example, the internal nodes in the B+tree,
Masstree, and Skip List can be removed entirely. This would pro-
vide another reduction in space but it would also make point queries
slower. Thus, we keep these internal nodes in B+tree and Skip List.
For the Masstree, however, it is possible to do this without a signif-
icant performance penalty. This is because most of the trie nodes in
Masstree are small and do not benefit from a B+tree structure. As a
result, our compacted version of Masstree only stores the leaf nodes
contiguously as an array in each trie node. To perform a look-up, it
uses binary search over this array instead of a B+tree walk to find
the appropriate entries. Our results show that performing a binary
search is as fast as searching a B+tree in Masstree. We also note
that this rule does not affect Masstree’s overall trie, a distinguishing
feature of Masstree compared to B+trees and Skip Lists.

We also need to deal with Masstree’s keybags. In Figure 4, we
provide a detailed structure of the compacted Masstree. It concate-
nates all the key suffixes within a trie node and stores them in a
single byte array, along with an auxiliary offset array to mark their
start locations. This reduces the structural overhead of maintaining
multiple keybags for each trie node.

4.4 Rule #3: Compression
The final rule is to compress internal nodes or memory pages used
in the index. For this step, we can use any general-purpose com-
pression algorithm. We choose the ones that are designed to have
fast decompression methods in exchange for a lower compression
rate, such as Snappy [14] or LZ4 [5]. Column five of Figure 2
shows how we apply the Compression Rule to the B+tree, Masstree,
Skip List and ART. Only the leaf nodes are compressed so that ev-
ery point query needs to decompress at most one node. To mini-
mize the cost of an expensive decompress-node operation, we main-
tain a cache of recently decompressed nodes. The node cache ap-
proximates LRU using the CLOCK replacement algorithm.

This rule is not always necessary for hybrid indexes because of
its performance overhead. Our results in Sections 6 and 7 show that
using compression for in-memory data structures is expensive even
with performance optimizations, such as node caching. Further-
more, the compression ratio is not guaranteed because it depends
heavily on the workload, especially the key distribution. For many
applications, the significant degradation in throughput may not jus-
tify the space savings; nevertheless, compression remains an option
for environments with significant space constraints.

5. MERGE
This section focuses on Step 3 of the Dual-Stage Transformation
guidelines: merging tuples from the dynamic stage to the static
stage. Although the merge process happens infrequently, it should
be fast and efficient on temporary memory usage. Instead of using
standard copy-on-write techniques, which would double the space
during merging, we choose a more space-efficient merge algorithm
that blocks all queries temporarily. There are trade-offs between
blocking and non-blocking merge algorithms. Blocking algorithms
are faster but hurt tail latency while non-blocking algorithms exe-
cute more smoothly but affect more queries because of locking and
latching. Implementing non-blocking merge algorithms is out of
the scope of this paper, and we defer it to future work.

The results in Section 6.3 show that our merge algorithm takes
60 ms to merge a 10 MB B+tree into a 100 MB Compact B+tree.
The merge time increases linearly as the size of the index grows.
The space overhead of the merge algorithm, however, is only the
size of the largest array in the dynamic stage structure, which is al-
most negligible compared to the size of the entire dual-stage index.
Section 5.1 describes the merge algorithm. Section 5.2 discusses
two important runtime questions: (1) what data to merge from one
stage to the next; and (2) when to perform this merge.

5.1 Merge Algorithm
Even though individual merge algorithms can vary significantly
depending on the complexity of the data structure, they all have
the same core component. The basic building blocks of a com-
pacted data structure are sorted arrays containing all or part of the
index entries. The core component of the merge algorithm is to
extend those sorted arrays to include new elements from the dy-
namic stage. When merging elements from the dynamic stage, we
control the temporary space penalty as follows. We allocate a new
array adjacent to the original sorted array with just enough space
for the new elements from the dynamic stage. The algorithm then
performs in-place merge sort on the two consecutive sorted arrays
to obtain a single extended array. The temporary space overhead
for merging in this way is only the size of the smaller array, and the
in-place merge sort completes in linear time.

The steps for merging B+tree and Skip List to their compacted
variations are straightforward. They first merge the leaf-node ar-
rays using the algorithm described above, and then rebuild the inter-
nal nodes. The internal nodes are constructed based on the merged
leaf nodes so that the balancing properties of the structures are
maintained. Merging Masstree and ART to their compacted ver-
sions, however, are more complicated. When merging two trie
nodes, the algorithms (depth-first) recursively create new merg-
ing tasks when two child nodes (or leaves/suffixes) require further
merging. We present the detailed algorithms in Appendix B.

5.2 Merge Strategy
In this section, we discuss two important design decisions: (1) what
to merge, and (2) when to merge.

What to Merge: On every merge operation, the system must
decide which entries to move from the dynamic stage to the static
stage. Strategy one, called merge-all, merges the entire set of dy-
namic stage entries. This choice is based on the observation that
many OLTP workloads are insert-intensive with high merge de-
mands. Moving everything to the static stage during a merge makes
room for the incoming entries and alleviates the merge pressure as
much as possible. An alternative strategy, merge-cold, tracks key
popularity and selectively merges the cold entries to the static stage.

The two strategies interpret the role of the dynamic stage differ-
ently. Merge-all treats the dynamic stage as a write buffer that ab-
sorbs new records, amortizing the cost of bulk insert into the static
stage. Merge-cold, however, treats the dynamic stage as a write-
back cache that holds the most recently accessed entries. Merge-
cold represents a tunable spectrum of design choices depending on
how hot and cold are defined, of which merge-all is one extreme.

The advantage of merge-cold is that it creates “shortcuts” for
accessing hot entries. However, it makes two trade-offs. First,
it typically leads to higher merge frequency because keeping hot
entries renders the dynamic stage unable to absorb as many new
records before hitting the merge threshold again. The merge itself
will also be slower because it must consider the keys’ hot/cold sta-

tus. Second, merge-cold imposes additional overhead for tracking
an entry’s access history during normal operations.

Although merge-cold may work better in some cases, given the
insert-intensive workload patterns of OLTP applications, we con-
sider merge-all to be the more general and more suitable approach.
We compensate for the disadvantage of merge-all (i.e., some older
yet hot tuples reside in the static stage and accessing them requires
searching both stages in order) by adding a Bloom filter atop the
dynamic stage as described in Section 3.

When to Merge: The second design decision is what event trig-
gers the merge process to run. One strategy to use is a ratio-based
trigger: merge occurs whenever the size ratio between the dynamic
and the static stages reaches a threshold. An alternative strategy
is to have a constant trigger that fires whenever the size of the dy-
namic stage reaches a constant threshold.

The advantage of a ratio-based trigger is that it automatically ad-
justs the merge frequency according to the index size. This strategy
prevents write-intensive workloads from merging too frequently.
Although each merge becomes more costly as the index grows,
merges happen less often. One can show that the merge overhead
over time is constant. The side effect is that the average size of the
dynamic stage gets larger over time, resulting in an increasingly
longer average search time in the dynamic stage.

A constant trigger works well for read-intensive workloads be-
cause it bounds the size of the dynamic stage ensuring fast look-
ups. For write-intensive workloads, however, this strategy leads to
higher overhead because it keeps a constant merge frequency even
though merging becomes more expensive over time. We found that
a constant trigger is not suitable for OLTP workloads due to too fre-
quent merges. We perform a sensitivity analysis of the ratio-based
merge strategy in Appendix C. Although auto-tuning is another op-
tion, it is beyond the scope of this paper.

6. MICROBENCHMARK EVALUATION
For our evaluation, we created five hybrid indexes using our DST
guidelines proposed in Section 3. We use X to represent either
B+tree, Masstree, Skip List, or ART. Hybrid-Compact (or sim-
ply Hybrid) X means that the static stage uses the Compaction
and Structural Reduction D-to-S Rules from Section 4. Hybrid-
Compressed means that the static stage structure is also compressed
using Snappy [14] according to the Compression Rule. We imple-
mented Hybrid-Compact for all four data structures. We only im-
plemented Hybrid-Compressed B+tree for this evaluation to ver-
ify our conclusion that using general-purpose compression is not a
viable solution for improving space-efficiency of indexes in main-
memory OLTP databases.

We evaluate hybrid indexes in two steps. In this section, we eval-
uate the hybrid index as stand-alone key-value data structure using
YCSB-based microbenchmarks. We first show the separate impact
on performance and space of a hybrid index’s building blocks. We
then compare each hybrid index to its original structure to show
the performance trade-offs made by adopting a hybrid approach for
better space efficiency. We did not use an existing DBMS for this
section because we did not want to taint our measurement with fea-
tures that are not relevant to the evaluation.

In Section 7, we evaluate hybrid indexes inside H-Store, a state-
of-the-art main-memory OLTP database system. We replace the
default STX B+tree with the corresponding transformed hybrid in-
dexes and evaluate the entire DBMS end-to-end.

6.1 Experiment Setup & Benchmarks
We used a server with the following configuration in our evaluation:

CPU: 2×Intel® Xeon® E5-2680 v2 CPUs @ 2.80 GHz
DRAM: 4×32 GB DDR3 RAM
Cache: 256 KB L2-cache, 26 MB L3-cache

Disk: 500 GB, 7200 RPM, SATA (used only in Section 7)

We used a set of YCSB-based microbenchmarks to mimic OLTP
index workloads. The Yahoo! Cloud Serving benchmark (YCSB)
approximates typical large-scale cloud services [22]. We used its
default workloads A (read/write, 50/50), C (read only), and E (scan/
insert, 95/5) with Zipfian distributions, which have skewed access
patterns common to OLTP workloads. The initialization phase in
each workload was also measured and reported as the insert-only
workload. For each workload, we tested three key types: 64-bit ran-
dom integers, 64-bit monotonically increasing integers, and email
addresses with an average length of 30 bytes. The random integer
keys came directly from YCSB while the email keys were drawn
from a large email collection. All values are 64-bit integers to rep-
resent tuple pointers. To summarize:

Workloads: insert-only, read-only, read/write, scan/insert
Key Types: 64-bit random int, 64-bit mono-inc int, email

Value: 64-bit integer (tuple pointers)

All experiments in this section are single-threaded without any
network activity. An initialization phase inserts 50 million entries
into the index. Then the measurement phase executes 10 million
key-value queries according to the workload. Throughput results in
the bar charts are the number of operations divided by the execution
time; memory consumption is measured at the end of each trial. All
numbers reported are the average of three trials.

6.2 Compaction & Compression Evaluation
We analyze hybrid indexes by first evaluating their building blocks.
As mentioned in Section 4, the data structure for the static stage
must be both space-efficient and fast for read operations. To test
this, we compare the data structures created by applying the D-
to-S (Compact/Compressed X) rules to the original data structures
(X) using the read-only workloads described in Section 6.1. Here,
X represents either B+tree, Masstree, Skip List, or ART . Note
that this is an evaluation of the data structures alone without the
runtime merging process that is needed to move data from the dy-
namic stage to the static stage. We consider the complete hybrid
index architecture (with merging) in Section 6.4.

As Figure 5 shows, the read throughput for the compact indexes
is up to 20% higher in most cases compared to their original data
structures. This is not surprising because these compact versions
inherit the core design of their original data structures but achieve a
more space-efficient layout with less structural overhead. This re-
sults in fewer nodes/levels to visit per look-up and better cache per-
formance. The only compact data structure that performs slightly
worse is the Compact ART for random integer (4%) and email keys
(1%). This is because unlike the other three compact indexes, Com-
pact ART uses a slightly different organization for its internal nodes
that causes a degradation in performance in exchange for a greater
space saving (i.e., Layout 1 is slower than Layout 3 for look-ups –
see Section 4.2).

Figure 5 also shows that the compact indexes reduce the mem-
ory footprint by up to 71% (greater than 30% in all but one case).
The savings come from higher data occupancy and less structural
waste (e.g., fewer pointers). In particular, the Compact ART is only
half the size for random integer and email keys because ART has
relatively low node occupancy (54%) compared to B+tree and Skip
List (69%) in those cases. For monotonically increasing (mono-
inc) integer keys, the original ART is already optimized for space.

rand mono-inc email rand mono-inc email
0

1

2

3

4

5

6

7

8
R

ea
d

Th
ro

ug
hp

ut
(M

op
s/

s)

5.
66

5.
52

1.
87

6.
07

5.
68

1.
88

3.
85

3.
75

1.
54

0

1

2

3

4

5

6

1.
25

1.
78

3.
25

0.
87

0.
87

2.
22

0.
88

0.
66

1.
54

B+tree
Compact B+tree
Compressed B+tree

(a) B+tree

rand mono-inc email rand mono-inc email
0

1

2

3

4

5

6

4.
16 4.

37

3.
57

4.
90

4.
91

3.
88

0

2

4

6

8

10

2.
73

2.
56

6.
73

0.
86 1.
01

1.
94

Masstree
Compact Masstree

(b) Masstree

rand mono-inc email rand mono-inc email
0

1

2

3

4

5

6

7

8

5.
84

5.
59

1.
84

5.
99

5.
72

1.
82

0

1

2

3

4

5

1.
26

1.
78

3.
30

0.
86

0.
86

2.
23

Skip List
Compact Skip List

(c) Skip List

rand mono-inc email rand mono-inc email
0

5

10

15

20

25

30

35

40

45

23
.5

31
.6

8.
0

22
.6

37
.9

7.
9

0.0

0.5

1.0

1.5

2.0

M
em

or
y

(G
B

)

1.
17

0.
40

1.
34

0.
54

0.
40

0.
62

ART
Compact ART

(d) ART

Figure 5: Compaction & Compression Evaluation – Read performance and storage overhead for the compacted and compressed data structures generated
by applying the D-to-S rules. Note that the figures have different Y-axis scales (rand=random integer, mono-inc=monotonically increasing integer).

0 200 400 600 800 1000
Static-stage Index Size (MB)

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

random int
mono-inc int
email

(a) B+tree

0 200 400 600 800 1000
Static-stage Index Size (MB)

0.0

0.5

1.0

1.5

2.0
random int
mono-inc int
email

(b) Masstree

0 200 400 600 800 1000
Static-stage Index Size (MB)

0.0

0.5

1.0

1.5

2.0
random int
mono-inc int
email

(c) Skip List

0 200 400 600 800 1000
Static-stage Index Size (MB)

0.0

0.5

1.0

1.5

2.0
random int
mono-inc int
email

(d) ART

Figure 6: Merge Overhead – Absolute merge time given the static-stage index size. Dynamic-stage index size = 1
10

static-stage index size.

Instructions IPC L1 Misses L2 Misses

B+tree 4.9B 0.8 262M 160M
Masstree 5.4B 0.64 200M 174M
Skip List 4.5B 0.78 277M 164M
ART 2.1B 1.5 58M 26M

Table 2: Point Query Profiling – CPU-level profiling measurements for
10M point queries of random 64-bit integer keys for B+tree, Masstree, Skip
List, and ART (B=billion, M=million).

The Compact Masstree has the most space savings compared to the
others because its internal structures (i.e., B+trees) are completely
flattened into sorted arrays.

We also tested the Compression Rule (Section 4.4) on the B+tree.
As shown in Figure 5a, although the Compressed B+tree saves ad-
ditional space for the mono-inc (24%) and email (31%) keys, the
throughput decreases from 18–34%. Since the other data structures
have the same problems, we choose not to evaluate compressed ver-
sions of them and conclude that naïve compression is a poor choice
for in-memory OLTP indexes. Thus, for the rest of this paper, when
we refer to a “Hybrid” index, we mean one whose static stage-
structure is compacted (not compressed, unless explicitly stated).

Overall we see that ART has higher point query performance
than the other three index structures. To better understand this, we
profiled the 10 million point queries of random 64-bit integer keys
for the four original data structures using PAPI [10]. Table 2 shows
the profiling results for total CPU instructions, instructions per cy-
cle (IPC), L1 cache misses and L2 cache misses. We observe that
ART not only requires fewer CPU instructions to perform the same
load of point queries, but also uses cache much more efficiently
than the other three index structures.

6.3 Merge Strategies & Overhead
We next evaluate the merge process that moves data from the dy-
namic stage to the static stage at runtime. We concluded in Sec-
tion 5.2 that ratio-based triggers are more suitable for OLTP appli-
cations because it automatically adjusts merge frequency according
to the index size. We show a sensitivity analysis of the ratio-based
merge strategy in Appendix C. Based on the analysis, we choose 10
as the default merge ratio for all hybrid indexes in the subsequent
experiments in this paper.

Using the default merge strategy, we next measure the cost of
the merge process. We used the insert-only workload in this exper-
iment because it generates the highest merge demand. For all four
hybrid indexes and all three key types, we recorded the absolute
time for every triggered merge operation along with the static-stage
index size at the time of the execution to measure the merge speed.
Note that the size of the dynamic stage is always 1

10
of that of the

static stage at merge.
Figure 6 illustrates how the merge time changes with the size

of the static stage of the indexes. In general, the time to perform
a merge increases linearly with the size of the index. Such lin-
ear growth is inevitable because of the fundamental limitations of
merging sorted arrays. But merging occurs less frequently as the
index size increases because it takes longer to accumulate enough
new entries to reach the merge ratio threshold again. As such, the
amortized cost of merging remains constant over time. We also
observe an interesting exception when running hybrid ART using
mono-inc integer keys. As Figure 6d shows, the merge time (red
line) is much lower than the other key types. This is because the
hybrid ART does not store nodes at the same level contiguously in
an array in the same manner as the other data structures (see Fig-
ure 2). Hence, the merge process for ART with mono-inc integers
only needs to create and rebuild a few number of nodes to complete
the merge, which is faster than readjusting the entire array.

6.4 Hybrid Indexes vs. Originals
Lastly, we compare the hybrid indexes to their corresponding origi-
nal structures to show the trade-offs of adopting a hybrid approach.
We evaluated each of these indexes using the same set of YCSB-
based workloads described in Section 6.1 with all three key types.
We conducted separate experiments using the data structures as
both primary key (i.e., unique) and secondary key (i.e., non-unique)
indexes. We present the primary key index evaluation here. Results
for secondary key indexes can be found in Appendix E.

Figure 7 shows the throughput and memory consumption for
hybrid indexes used as primary key indexes. The main takeaway
is that all of the hybrid indexes provide comparable throughputs
(faster in some workloads, slower in others) to their original struc-
tures while consuming 30–70% less memory. Hybrid-Compressed
B+tree achieves up to 30% additional space saving but loses a sig-

64-bit Random Int 64-bit Mono-Inc Int Email Memory
B

+t
re

e
Pr

im
ar

y

insert-only read/write read-only scan/insert0

2

4

6

8

10
Th

ro
ug

hp
ut

(M
op

s/
s)

2.
12

5.
13 5.

66

1.
86

1.
30

6.
19

5.
38

1.
04

0.
50

5.
81

3.
81

0.
50

B+tree
Hybrid
Hybrid-Compressed

insert-only read/write read-only scan/insert0

5

10

15

Th
ro

ug
hp

ut
(M

op
s/

s)

6.
02

5.
03 5.
55

1.
84

4.
18

12
.6

2

5.
55

1.
30

1.
00

11
.0

3

4.
04

0.
51

B+tree
Hybrid
Hybrid-Compressed

insert-only read/write read-only scan/insert0

1

2

3

4

Th
ro

ug
hp

ut
(M

op
s/

s)

0.
95

1.
74 1.

95

0.
81

0.
63

2.
31

1.
78

0.
38

0.
20

1.
98

1.
54

0.
20

B+tree
Hybrid
Hybrid-Compressed

rand int mono-inc int email
0

1

2

3

4

M
em

or
y(

G
B

)

1.
3

1.
8

3.
2

0.
9

0.
9

2.
3

0.
9

0.
7

1.
6

B+tree
Hybrid
Hybrid-Compressed

M
as

st
re

e
Pr

im
ar

y

insert-only read/write read-only scan/insert0

2

4

6

Th
ro

ug
hp

ut
(M

op
s/

s)

1.
95

3.
66 4.

16

0.
06

1.
29

5.
37

4.
29

0.
10

Masstree
Hybrid

insert-only read/write read-only scan/insert0

2

4

6

8

Th
ro

ug
hp

ut
(M

op
s/

s)

2.
95

3.
98 4.

38

0.
06

1.
70

6.
51

4.
64

0.
10

Masstree
Hybrid

insert-only read/write read-only scan/insert0

1

2

3

4

5

6

Th
ro

ug
hp

ut
(M

op
s/

s)

1.
33

3.
37 3.

61

0.
05

0.
86

4.
81

3.
57

0.
10

Masstree
Hybrid

rand int mono-inc int email0

2

4

6

8

M
em

or
y(

G
B

)

2.
7

2.
6

6.
7

0.
9

0.
9

2.
0

Masstree
Hybrid

Sk
ip

L
is

tP
ri

m
ar

y

insert-only read/write read-only scan/insert0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

op
s/

s)

2.
21

5.
51 5.
84

1.
89

1.
50

6.
40

5.
48

1.
08

Skip List
Hybrid

insert-only read/write read-only scan/insert0

5

10

15

Th
ro

ug
hp

ut
(M

op
s/

s)

7.
16

5.
25 5.
59

2.
00

4.
80

12
.6

8

5.
30

1.
50

Skip List
Hybrid

insert-only read/write read-only scan/insert0

1

2

3

Th
ro

ug
hp

ut
(M

op
s/

s)

0.
99

1.
75 1.
84

0.
68

0.
62

2.
41

1.
79

0.
36

Skip List
Hybrid

rand int mono-inc int email0

1

2

3

4

M
em

or
y(

G
B

)

1.
3

1.
8

3.
3

0.
9

0.
9

2.
3

Skip List
Hybrid

A
R

T
Pr

im
ar

y

insert-only read/write read-only scan/insert0

10

20

30

40

Th
ro

ug
hp

ut
(M

op
s/

s)

4.
5 6.

6

23
.7

2.
93.
8

23
.8

19
.8

0.
8

ART
Hybrid

insert-only read/write read-only scan/insert0

10

20

30

40

50

Th
ro

ug
hp

ut
(M

op
s/

s)

38
.4

25
.4

31
.6

3.
4

34
.7

33
.6 35

.8

0.
9

ART
Hybrid

insert-only read/write read-only scan/insert0

5

10

15

20

Th
ro

ug
hp

ut
(M

op
s/

s)

2.
82

2.
79

8.
01

2.
40

2.
45

12
.5

0

7.
86

0.
39

ART
Hybrid

rand int mono-inc int email0.0

0.5

1.0

1.5

2.0

M
em

or
y(

G
B

)

1.
2

0.
4

1.
3

0.
6

0.
4

0.
7

ART
Hybrid

Figure 7: Hybrid Index vs. Original (Primary Indexes) – Throughput and memory measurements for the different YCSB workloads and key types when
the data structures are used as primary key (i.e., unique) indexes. Note that the figures have different Y-axis scales.

nificant fraction of the throughput. This trade-off might only be
acceptable for applications with tight space constraints.

Insert-only: One disadvantage of a hybrid index is that it re-
quires periodic merges. As shown in Figure 7, all hybrid indexes
are slower than their original structures under the insert-only work-
loads since they have the highest merge demand. The merging,
however, is not the main reason for the performance degradation.
Instead, it is because a hybrid index must check both the dynamic
and static stages on every insert to verify that a key does not already
exist in either location. Such key uniqueness check causes about a
30% insert throughput drop. For the Hybrid-Compressed B+tree,
however, merge remains the primary overhead because of the de-
compression costs.

Read/Write: Despite having to check for uniqueness in two lo-
cations on inserts, the hybrid indexes’ dual-stage architecture is bet-
ter at handling skewed updates. The results for this workload show
that all of the hybrid indexes outperform their original structures
for all key types because they store newly updated entries in the
smaller (and therefore more cache-friendly) dynamic stage.

Read-only: We already compared the point-query performance
for the dynamic and static stage data structures in Section 6.2.
When we put these structures together in a single hybrid index,
the overall point-query performance is only slightly slower than
the static stage alone because a query may have to check both data
structures. We, therefore, use a Bloom filter in front of the dynamic
stage to ensure that most reads only search one of the stages. We
evaluate the impact of this filter in Appendix D.

Scan/Insert: This last workload shows that the hybrid indexes
have lower throughput for range queries. This is expected because
their dual-stage design requires comparing keys from both the dy-

namic and static stages to determine the “next” entry when advanc-
ing the iterator. This comparison operation is particularly ineffi-
cient for hybrid ART because the data structure does not store the
full keys in the leaf nodes. Therefore, performing full-key compar-
ison requires fetching the keys from the records first. We also note
that range query results are less optimized in Masstree because it
does not provide the same iterator API that the other index imple-
mentations support. We do not believe, however, that there is any-
thing inherent to Masstree’s design that would make it significantly
better or worse than the other data structures for this workload.

Memory: All of the hybrid indexes use significantly less mem-
ory than their original data structures. An interesting finding is that
although the random and mono-inc integer key data sets are the
same size, the B+tree and Skip List use more space to store the
mono-inc integer keys. This is because the key insertion pattern
of mono-inc integers produces B+tree nodes that are only 50% full
(instead of 69% on average). The paged-deterministic Skip List
that we used has a similar hierarchical structure as the B+tree and
thus has a similar node occupancy. ART, however, uses less space
to store mono-inc keys than the random keys because of prefix com-
pression. This also reduces memory for the email keys as well.

7. FULL DBMS EVALUATION
This section shows the effects of integrating hybrid indexes into
the in-memory H-Store OLTP DBMS [3, 33]. The latest version of
H-Store uses B+tree as its default index data structure. We show
that switching to hybrid B+tree reduces the DBMS’s footprint in
memory and enables it to process transactions for longer without
having to use secondary storage. We omit the evaluation of the
other hybrid data structures because they provide similar benefits.

Throughput DB Memory
0

10

20

30

40

50

60

Th
ro

ug
hp

ut
(K

tx
ns

/s
)

59.9
54.0

38.3

0

5

10

15

20

25

30

9.6

4.1
2.1

18.1

11.9

8.1

53%
34%

26%

TPC-C
B+tree
Hybrid
Hybrid-Compressed
Index Memory

(a) TPC-C Throughput + Memory

Throughput DB Memory
0

50

100

150

200

250
224.1

206.3

156.0

0

2

4

6

8

10

12

14

4.4

2.5
1.5

8.4

6.2

4.4

53%
41% 35%

Voter
B+tree
Hybrid
Hybrid-Compressed
Index Memory

(b) Voter Throughput + Memory

Throughput DB Memory
0

50

100

150

200

250

201.6 199.0
183.4

0

2

4

6

8

10

12

M
em

or
y

C
on

su
m

pt
io

n
(G

B
)

1.7
1.0 0.7

6.2
5.3 4.9

28% 18% 15%

Articles
B+tree
Hybrid
Hybrid-Compressed
Index Memory

(c) Articles Throughput + Memory

Figure 8: In-Memory Workloads – Throughput and memory measurements of the H-Store DBMS using the default B+tree, Hybrid, and Hybrid-Compressed
B+tree when running workloads that fit entirely in memory. The system runs for 6 min in each benchmark trial.

7.1 H-Store Overview
H-Store is a distributed, row-oriented DBMS that supports serial-
izable execution of transactions over main memory partitions [33].
It is optimized for the efficient execution of workloads that contain
transactions invoked as pre-defined stored procedures. Client appli-
cations initiate transactions by sending the procedure name and in-
put parameters to any node in the cluster. Each partition is assigned
a single-threaded execution engine that is responsible for executing
transactions and queries for that partition. A partition is protected
by a single lock managed by its coordinator that is granted to trans-
actions one-at-a-time based on the order of their arrival timestamp.

Anti-caching is a memory-oriented DBMS design that allows
the system to manage databases that are larger than the amount
of memory available without incurring the performance penalty of
a disk-oriented system [23]. When the amount of in-memory data
exceeds a user-defined threshold, the DBMS moves data to disk to
free up space for new data. To do this, the system dynamically con-
structs blocks of the coldest tuples and writes them asynchronously
to the anti-cache on disk. The DBMS maintains in-memory “tomb-
stones” for each evicted tuple. When a running transaction attempts
to access an evicted tuple through its tombstone, the DBMS aborts
that transaction and fetches the tuple from the anti-cache with-
out blocking other transactions. Once the data that the transaction
needs is in memory, the system restarts the transaction.

7.2 Benchmarks
The experiments in this section use H-Store’s built-in benchmark-
ing framework to explore three workloads:

TPC-C: The TPC-C benchmark is the current industry standard
for evaluating the performance of OLTP systems [51]. Its five
stored procedures simulate a warehouse-centric order processing
application. Approximately 88% of the transactions executed in
TPC-C modify the database. We configure the database to contain
eight warehouses and 100,000 items.

Voter: This benchmark simulates a phone-based election appli-
cation. It is designed to saturate the DBMS with many short-lived
transactions that all update a small number of records. There are
a fixed number of contestants in the database. The workload is
mostly transactions that update the total number of votes for a par-
ticular contestant. The DBMS records the number of votes made by
each user based on their phone number; each user is only allowed
to vote a fixed number of times.

Articles: This workload models an on-line news website where
users submit content, such as text posts or links, and then other

B+tree Hybrid Hybrid-Compressed

50%-tile 10 ms 10 ms 11 ms
99%-tile 50 ms 52 ms 83 ms

MAX 115 ms 611 ms 1981 ms

Table 3: Latency Measurements – Transaction latencies of H-Store us-
ing the default B+tree, Hybrid B+tree, and Hybrid-Compressed B+tree as
indexes for the TPC-C workload (same experiment as in Figure 8a).

users post comments to them. All transactions involve a small
number of tuples that are retrieved using either primary key or sec-
ondary indexes. We design and scale the benchmark so that the
transactions coincide roughly with a week of Reddit’s [11] traffic.

7.3 In-Memory Workloads
We first show that using hybrid indexes helps H-Store save a signif-
icant amount of memory. We ran the aforementioned three DBMS
benchmarks on H-Store (anti-caching disabled) with three differ-
ent index types: (1) B+tree, (2) Hybrid B+tree, and (3) Hybrid-
Compressed B+tree. Each benchmark warms up for one minute
after the initial load and then runs for five minutes on an 8-partition
H-Store instance (one CPU core per partition). We deployed eight
clients on the same machine using another eight cores on the other
socket to exclude network factors. We compared throughput, in-
dex memory consumption, and total database memory consump-
tion among the three index types. Figure 8 shows the results. The
throughput results are the average throughputs during the execution
time (warm-up period excluded); memory consumption is mea-
sured at the end of each benchmark. We repeated each benchmark
three times and compute the average for the final results.

As shown in Figure 8, both Hybrid and Hybrid-Compressed B+
tree have a smaller memory footprint than the original B+tree: 40–
55% and 50–65%, respectively. The memory savings for the entire
database depend on the relative size of indexes to database. Hybrid
indexes favor workloads with small tuples, as in TPC-C and Voter,
so the index memory savings translate into significant savings at
the database level.

Hybrid B+tree incurs a 1–10% average throughput drop com-
pared to the original, which is fairly small considering the memory
savings. Hybrid-Compressed B+tree, however, sacrifices through-
put more significantly to reap its additional memory savings. These
two hybrid indexes offer a throughput-memory tradeoff that may
depend on the application’s requirements.

The results in Figure 8 are consistent with our findings in the mi-
crobenchmark evaluation (Section 6). The throughput drops asso-
ciated with hybrid indexes are more noticeable in the TPC-C (10%)
and Voter (8%) benchmarks because they are insert-intensive and
contain a large fraction of primary indexes. Referring to the insert-

0

25

50

75 Anti-caching points

TPC-C
B+tree

0

25

50

75

Th
ro

ug
hp

ut
(tx

ns
/s

)

Anti-caching pointsHybrid

0.0 2.5 5.0 7.5 10.0 12.5

Transactions Executed (million)

0

25

50

75 Anti-caching pointsHybrid-Compressed

(a) TPC-C Throughput Timelines

0

100

200

300

400

Anti-caching points

Voter
B+tree

0

100

200

300

400

Anti-caching pointsHybrid

0 20 40 60 80 100

Transactions Executed (million)

0

100

200

300

400

Anti-caching pointsHybrid-Compressed

(b) Voter Throughput Timelines

0

200

400 Anti-caching points

Articles
B+tree

0

200

400 Anti-caching pointsHybrid

0 8 16 24 32

Transactions Executed (million)

0

200

400 Anti-caching pointsHybrid-Compressed

(c) Articles Throughput Timelines

0.0

2.5

5.0

7.5 B+tree Anti-Cache Data
In-Memory Data
Index Data

0.0

2.5

5.0

7.5

M
em

or
y

C
on

su
m

pt
io

n
(G

B
)

Hybrid

0.0 2.5 5.0 7.5 10.0 12.5

Transactions Executed (million)

0.0

2.5

5.0

7.5 Hybrid-Compressed

(d) TPC-C Memory Breakdown

0

4

8

12 B+treeAnti-Cache Data
In-Memory Data
Index Data

0

4

8

12 Hybrid

0 20 40 60 80 100

Transactions Executed (million)

0

4

8

12 Hybrid-Compressed

(e) Voter Memory Breakdown

0

3

6
B+treeAnti-Cache Data

In-Memory Data
Index Data

0

3

6
Hybrid

0 8 16 24 32

Transactions Executed (million)

0

3

6
Hybrid-Compressed

(f) Articles Memory Breakdown

Figure 9: Larger-than-Memory Workloads – Throughput and memory measurements of the H-Store DBMS using B+tree, Hybrid, and Hybrid-Compressed
B+tree as index structures when running workloads that are larger than the amount of memory available to the system. H-Store uses its anti-caching component
to evict cold data from memory out to disk. The system runs 12 minutes in each benchmark trial.

only workloads in Figure 7, we see that hybrid indexes are slower
when used as primary indexes because of the key-uniqueness check.
The Articles benchmark, however, is more read-intensive. Since
hybrid indexes provide comparable or better read throughput (see
Figure 7), the throughput drop in Figure 8c is small (1%).

Table 3 lists the 50%-tile, 99%-tile, and MAX latency numbers
for the TPC-C benchmark. Hybrid indexes have little effect on
50%-tile and 99%-tile latencies. For example, the difference in
99% latency between Hybrid B+tree and the original is almost neg-
ligible. The MAX latencies, however, increase when switching to
hybrid indexes because our current merge algorithm is blocking.
But the infrequency of merge means that the latency penalty only
shows up when looking at MAX.

7.4 Larger-than-Memory Workloads
The previous section shows the savings from using hybrid indexes
when the entire database fits in memory. Here, we show that hybrid
indexes can further help H-Store with anti-caching enabled expand
its capacity when the size of the database goes beyond physical
memory. When both memory and disk are used, the memory saved
by hybrid indexes allows the database to keep more hot tuples in
memory. The database thus can sustain a higher throughput be-
cause fewer queries must retrieve tuples from disk.

We ran TPC-C, Voter, and Articles on H-Store with anti-caching
enabled for all three index configurations: B+tree, Hybrid B+tree,
and Hybrid-Compressed B+tree. Each benchmark executes for 12
minutes after the initial load. We used the same client-server con-
figurations as in Section 7.3. We set the anti-caching eviction thresh-
old to be 5 GB for TPC-C and Voter, 3 GB for Articles so that
the DBMS starts anti-caching in the middle of the execution. The
system’s eviction manager periodically checks whether the total
amount of memory used by the DBMS is above this threshold. If it
is, H-Store selects the coldest data to evict to disk. Figure 9 shows
the experiment results; note that we use the total number of trans-
actions executed on the x-axis rather than time.

Using hybrid indexes, H-Store with anti-caching executes more
transactions than the original B+tree index during the same 12-
minute run. We note that the B+tree and Hybrid B+tree configura-
tions cannot execute the Voter benchmark for the entire 12 minutes
because the DBMS runs out of memory to hold the indexes as only
the database tuples can be paged to disk.

Two features contribute to H-Store’s improved capacity when us-
ing hybrid indexes. First, with the same anti-caching threshold, hy-
brid indexes consume less memory, allowing the database to run
longer before the first anti-caching eviction occurs. Second, even
during periods of anti-caching activity, H-Store with hybrid indexes
sustains higher throughput because the saved index space allows
more tuples to remain in memory.

H-Store’s throughput when using anti-caching depends largely
on whether the workload reads evicted tuples [23]. TPC-C is an
insert-heavy workload that mostly reads new data. Thus, TPC-C’s
throughput decreases relatively slowly as the tuples are evicted to
disk. Voter never reads evicted data, so the throughput remains
constant. Articles, however, is relatively read-intensive and occa-
sionally queries cold data. These reads impact throughput during
anti-caching, especially at the end of the run when a significant
number of tuples have been evicted. The throughput fluctuations
for hybrid indexes (especially Hybrid-Compressed indexes) before
anti-caching are due to index merging. After anti-caching starts, the
large throughput fluctuations are because of the anti-caching evic-
tions since the current version of anti-caching is a blocking process;
all transactions are blocked until eviction completes.

8. RELATED WORK
Previous research explored unifying multiple underlying physical
data structures, each with different optimization focuses, to con-
struct a single logical entity. Some of the first examples include log-
structured engines such as log-structured merge (LSM) trees [44],
LevelDB [4] and LHAM [43]. Our hybrid index approach differs

from these techniques in several ways. First, log-structured engines
are storage management systems that leverage the storage hierarchy
while a hybrid index is an index data structure that resides only in
memory. Such difference greatly influences a number of design
decisions. For example, unlike LSM-trees, hybrid indexes avoid
having too many stages/levels (unless the workload is extremely
skewed) because the additional stages cause the worst case read
latency to increase proportionally to the number of stages. In ad-
dition, log-structured engines focus on speeding up writes while
hybrid indexes target at saving memory space.

SILT is a flash-based key-value store that achieves high perfor-
mance with a small memory footprint by using a multi-level stor-
age hierarchy with different data structures [39]. The first level is
a log-structured store that supports fast writes. The second level is
a transitional hash table to perform buffering. The final level is a
compressed trie structure. Hybrid indexes borrow from this design,
but unlike SILT, a hybrid index does not use a log-structured stor-
age tier because maximizing the number of sequential writes is not
a high priority for in-memory databases. Hybrid indexes also avoid
SILT’s heavyweight compression because of the large performance
overhead. Similar systems include Anvil, a modular framework for
database backends to allow flexible combinations of the underlying
key-value stores to maximize their benefits [40].

The Dynamic-to-Static Rules are inspired by work from Bent-
ley and Saxe [18]. In their paper, they propose general methods
for converting static structures to dynamic structures; their goal is
to provide a systematic method for designing new, performance-
optimized dynamic data structures. In this paper, we use a different
starting point, a dynamic data structure, and propose rules for cre-
ating a static version; furthermore, our focus is on creating space-
optimized instead of performance-optimized variants.

Several DBMSs use compressed indexes to reduce the amount of
data that is read from disk during query execution. There has been
considerable work on space-efficient indexes for OLAP workloads
to improve the performance of long running queries that access
large segments of the database [20, 53]. SQL Server’s columnar
indexes use a combination of dictionary-based, value-based, and
run-length encoding to compress the column store indexes [35].
MySQL’s InnoDB storage engine has the ability to compress B-
tree pages when they are written to disk [8]. To amortize com-
pression and decompression overhead, InnoDB keeps a modifica-
tion log within each B-tree page to buffer incoming changes to the
page. This approach differs from hybrid indexes, which focus on
structural reduction rather than data compression. Because hybrid
indexes target in-memory databases and their concomitant perfor-
mance objectives, data compression is prohibitive in most cases.

Other in-memory databases save space by focusing on the tu-
ple stores rather than the index structures. One example is SAP’s
HANA hybrid DBMS [28, 47]. In HANA, all new data is first
inserted into a row-major store engine that is optimized for OLTP
workloads. Over time, the system migrates tuples to dictionary-
compressed, in-memory columnar store that is optimized for OLAP
queries. This approach is also used in HyPer [29]. Hybrid in-
dexes take a similar approach to migrate cold data from the write-
optimized index to the compact, read-only index. Both these tech-
niques are orthogonal to hybrid indexes. A DBMS can use hybrid
indexes while still moving data out to these compressed data stores.

Other work seeks to reduce the database’s storage footprint by
exploiting the access patterns of OLTP workloads to evict cold
tuples from memory. These approaches differ in how they deter-
mine what to evict and the mechanism they use to move data. The
anti-caching architecture in H-Store uses an LRU to track how of-
ten tuples are accessed and then migrates cold data to an auxil-

iary, on-disk data store [23]. Although the tuple data is removed
from memory, the DBMS still has to keep all of the index keys in-
memory. A similar approach was proposed for VoltDB (the com-
mercial implementation of H-Store) where the database relies on
the OS’s virtual memory mechanism to move cold pages out to
disk [48]. The Siberia Project for Microsoft’s Hekaton categorizes
hot/cold tuples based on sampling their access history [49] and can
also migrate data out to an on-disk data store [27]. Hekaton still
uses a disk-backed index, so cold pages are swapped out to disk as
needed using SQL Server’s buffer pool manager and the remain-
ing in-memory index data is not compressed. Hybrid indexes do
not rely on any tracking information to guide the merging process
since it may not be available in every DBMS. It is future work to
determine whether such access history may further improve hybrid
indexes’ performance.

Dynamic materialized views materialize only a selective subset
of tuples in the view based on tuple access frequencies to save
space and maintenance costs [55]. Similarly, database cracking
constructs self-organizing, discriminative indexes according to the
data access patterns [31]. Hybrid indexes leverage the same work-
load adaptivity by maintaining fast access paths for the newly in-
serted/updated entries to save memory and improve performance.

9. FUTURE WORK
Our work can be extended in several directions. First, develop-
ing space-efficient non-blocking merge algorithms for hybrid in-
dexes can further satisfy the needs for tail-latency-sensitive appli-
cations. Second, with the non-blocking merge algorithms, it would
be worthwhile attempting to make the entire hybrid index concur-
rent so that it can be applied to a concurrent main-memory DBMS.
Third, the hybrid index architecture opens up the research oppor-
tunity to apply highly-compressed static data structures, including
succinct data structures, to database indexes.

10. CONCLUSION
A hybrid index uses the dual-stage architecture to combine two data
structures with different optimization emphasis to create a memory-
efficient and high-performance order-preserving index structure. It
uses a fast dynamic data structure as a write buffer in its dynamic
stage to provide fast inserts and accesses to the recently added en-
tries. For the second stage, it uses a compact, read-optimized data
structure to serve reads for colder data. This design captures the
characteristics of OLTP workloads, where newly inserted entries
are likely to be accessed/modified frequently in the near future
while older entries are mostly accessed through occasional look-
ups. We provide a set of guidelines, called the Dual-Stage Transfor-
mation (DST), to help index designers convert any order-preserving
index structure to a hybrid index. Experimental results show that
hybrid indexes created by applying the DST guidelines provide
throughput comparable to the original index structures while us-
ing significantly less memory. We hope that the various techniques
discussed in the paper can form an important step towards a hybrid
approach for index design in main-memory databases.

ACKNOWLEDGMENTS
This work was supported by funding from U.S. National Science
Foundation under awards IIS-1409802, CNS-1345305, and CCF-
1535821, as well as Intel via the Intel Science and Technology
Center for Cloud Computing (ISTC-CC).

For questions or comments about this paper, please call the
CMU Database Hotline at +1-844-88-CMUDB.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1409802
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1345305
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1535821
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1535821

11. REFERENCES

[1] ALTIBASE Index Documentation.
http://aid.altibase.com/display/migfromora/Index.

[2] Cache-Optimized Concurrent Skip list.
http://sourceforge.net/projects/skiplist/files/
Templatized%20C%2B%2B%20Version/.

[3] H-Store. http://hstore.cs.brown.edu.
[4] Leveldb. http://www.leveldb.org.
[5] LZ4. https://code.google.com/p/lz4/.
[6] MemSQL Documentation.

http://docs.memsql.com/latest/concepts/indexes/.
[7] MySQL Memory Storage Engine. http://dev.mysql.com/doc/

refman/5.7/en/memory-storage-engine.html.
[8] Mysql v5.5 – how compression works for innodb tables.

http://dev.mysql.com/doc/refman/5.5/en/
innodb-compression-internals.html.

[9] Overview of TimesTen Index Types. https://docs.oracle.com/
cd/E21901_01/timesten.1122/e21633/comp.htm#TTOPR380.

[10] Performance Application Programming Interface.
http://icl.cs.utk.edu/papi/index.html.

[11] Reddit. http://www.reddit.com.
[12] Redis Index. http://redis.io/topics/indexes.
[13] SAP Hana Indexes. http://saphanawiki.com/2015/09/

2160391-faq-sap-hana-indexes/.
[14] Snappy. https://github.com/google/snappy.
[15] SQLite Documentation. https://www.sqlite.org/docs.html.
[16] VoltDB Blog. https://voltdb.com/blog/

best-practices-index-optimization-voltdb.
[17] WiredTiger. http://wiredtiger.com.
[18] J. L. Bentley and J. B. Saxe. Decomposable searching problems I:

static-to-dynamic transformation. J. Algorithms, 1(4):301–358, 1980.
[19] T. Bingmann. STX B+ tree C++ template classes.

http://panthema.net/2007/stx-btree/.
[20] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation.

SIGMOD, pages 355–366, 1998.
[21] D. Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137,

June 1979.
[22] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with YCSB. In SoCC, pages
143–154, 2010.

[23] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik.
Anti-caching: A new approach to database management system
architecture. VLDB, 6(14):1942–1953, Sept. 2013.

[24] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker,
and D. Wood. Implementation techniques for main memory database
systems. SIGMOD Rec., 14(2):1–8, 1984.

[25] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL Server’s
Memory-Optimized OLTP Engine. In SIGMOD, pages 1–12, 2013.

[26] J. Dittrich and A. Jindal. Towards a one size fits all database
architecture. In CIDR, pages 195–198, 2011.

[27] A. Eldawy, J. J. Levandoski, and P. Larson. Trekking through siberia:
Managing cold data in a memory-optimized database. PVLDB,
7(11):931–942, 2014.

[28] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and
W. Lehner. Sap hana database: data management for modern
business applications. SIGMOD Rec., 40(4):45–51, Jan. 2012.

[29] F. Funke, A. Kemper, and T. Neumann. Compacting transactional
data in hybrid oltp&olap databases. VLDB, 5(11):1424–1435, July
2012.

[30] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP
through the looking glass, and what we found there. In SIGMOD,
pages 981–992, 2008.

[31] S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In
CIDR, pages 68–78, 2007.

[32] G. J. Jacobson. Succinct static data structures. 1980.
[33] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,

E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi. H-Store: A High-Performance, Distributed Main

Memory Transaction Processing System. VLDB, 1(2):1496–1499,
2008.

[34] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani,
H. Plattner, P. Dubey, and A. Zeier. Fast updates on read-optimized
databases using multi-core cpus. VLDB, 5(1):61–72, Sept. 2011.

[35] P.-A. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price,
S. Rangarajan, A. Surna, and Q. Zhou. Sql server column store
indexes. SIGMOD, pages 1177–1184, 2011.

[36] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.
Keller. Energy management for commercial servers. Computer,
36(12).

[37] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful
indexing for main-memory databases. ICDE, pages 38–49, 2013.

[38] J. Levandoski, D. Lomet, S. Sengupta, A. Birka, and C. Diaconu.
Indexing on modern hardware: Hekaton and beyond. SIGMOD,
pages 717–720, 2014.

[39] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A
memory-efficient, high-performance key-value store. SOSP ’11,
pages 1–13, 2011.

[40] M. Mammarella, S. Hovsepian, and E. Kohler. Modular data storage
with anvil. SOSP, pages 147–160, 2009.

[41] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast
multicore key-value storage. EuroSys, pages 183–196, 2012.

[42] J. I. Munro, T. Papadakis, and R. Sedgewick. Deterministic skip lists.
the third annual ACM-SIAM symposium on Discrete algorithms,
1992.

[43] P. Muth, P. O’Neil, A. Pick, and G. Weikum. The lham log-structured
history data access method. The VLDB Journal, 8(3-4):199–221, Feb.
2000.

[44] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured
merge-tree (lsm-tree). Acta Inf., 33(4):351–385, June 1996.

[45] A. Prout. The story behind memsql’s skiplist indexes.
http://blog.memsql.com/the-story-behind-memsqls-skip
list-indexes/.

[46] W. Pugh. Skip lists: A probabilistic alternative to balanced trees.
Communications of the ACM, 33(6):668–676, 1990.

[47] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd.
Efficient transaction processing in sap hana database: The end of a
column store myth. SIGMOD, pages 731–742, 2012.

[48] R. Stoica and A. Ailamaki. Enabling efficient os paging for
main-memory oltp databases. DaMoN, 2013.

[49] R. Stoica, J. J. Levandoski, and P.-A. Larson. Identifying hot and
cold data in main-memory databases. ICDE, pages 26–37, 2013.

[50] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era: (it’s time
for a complete rewrite). In VLDB, pages 1150–1160, 2007.

[51] The Transaction Processing Council. TPC-C Benchmark (Revision
5.9.0). http://www.tpc.org/tpcc/, June 2007.

[52] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 18–32, 2013.

[53] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The
implementation and performance of compressed databases. SIGMOD
Rec., 29(3):55–67, Sept. 2000.

[54] A. C.-C. Yao. On random 2-3 trees. Acta Informatica, 9:159–170,
1978.

[55] J. Zhou, P.-A. Larson, J. Goldstein, and L. Ding. Dynamic
materialized views. ICDE, pages 526–535, 2007.

http://aid.altibase.com/display/migfromora/Index
http://sourceforge.net/projects/skiplist/files/Templatized%20C%2B%2B%20Version/
http://sourceforge.net/projects/skiplist/files/Templatized%20C%2B%2B%20Version/
http://hstore.cs.brown.edu
http://www.leveldb.org
https://code.google.com/p/lz4/
http://docs.memsql.com/latest/concepts/indexes/
http://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.7/en/memory-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-compression-internals.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-compression-internals.html
https://docs.oracle.com/cd/E21901_01/timesten.1122/e21633/comp.htm#TTOPR380
https://docs.oracle.com/cd/E21901_01/timesten.1122/e21633/comp.htm#TTOPR380
http://icl.cs.utk.edu/papi/index.html
http://www.reddit.com
http://redis.io/topics/indexes
http://saphanawiki.com/2015/09/2160391-faq-sap-hana-indexes/
http://saphanawiki.com/2015/09/2160391-faq-sap-hana-indexes/
https://github.com/google/snappy
https://www.sqlite.org/docs.html
https://voltdb.com/blog/best-practices-index-optimization-voltdb
https://voltdb.com/blog/best-practices-index-optimization-voltdb
http://wiredtiger.com
http://panthema.net/2007/stx-btree/
http://blog.memsql.com/the-story-behind-memsqls-skip
list-indexes/
http://www.tpc.org/tpcc/

Year Supported Index Types

ALTIBASE [1] 1999 B-tree/B+tree, R-tree
H-Store [3] 2007 B+tree, hash index
HyPer [29] 2010 Adaptive Radix Tree, hash index
MSFT Hekaton [38] 2011 Bw-tree, hash index
MySQL (MEMORY) [7] 2005 B-tree, hash index
MemSQL [6] 2012 skip list, hash index
Redis [12] 2009 linked list, hash, skip list
SAP HANA [13] 2010 B+tree/CPB+tree
Silo [52] 2013 Masstree
SQLite [15] 2000 B-tree, R*-tree
TimesTen [9] 1995 B-tree, T-tree, hash index, bitmap
VoltDB [16] 2008 Red-Black Tree, hash index

Table 4: Index Types – The different type of index data structures sup-
ported by major commercial and academic in-memory OLTP DBMSs. The
year corresponds to when the system was released or initially developed.
The default index type for each DBMS is listed in bold.

APPENDIX
A. INDEX TYPES
In order to better understand how modern DBMSs use indexes,
we examined several of the major commercial and academic in-
memory OLTP DBMSs that were developed in the last two decades.
Our listing in Table 4 shows the index types (i.e., data structures)
supported by 12 DBMSs and the year that they were released. We
also include which index type is used as the default when the user
does not specify any hints to the DBMS; that is, the data structure
that the DBMS uses when application invokes the CREATE INDEX
command. Our survey shows that the order-preserving data struc-
tures are the most common, with the B+tree as the most popular
default index type supported in these systems. This is notable since
B+trees were originally designed for disk-oriented DBMSs in the
1970s [21]. We also note that In addition, most of the listed DBMSs
support hash indexes, but none of them use this as their default op-
tion. Four of the systems do not even expose a hash index to the
application developer, although they do use on internally for oper-
ator execution (e.g., joins). We attribute this to the fact that hash
indexes cannot support range queries and thus may provide unex-
pected performance for users.

B. DETAILED MERGE ALGORITHMS
This section extends Section 5.1 by providing more details about
the merge algorithms for the different data structures.

As we mentioned in Section 5.1, the algorithm for merging B+tree
to Compact B+tree is straightforward. The first step is to merge the
new items from the dynamic stage to the leaf-node array of the
Compact B+tree in the static stage, using the in-place merge sort
algorithm. Then, based on the merged leaf-node array, the algo-
rithm rebuilds the internal nodes level by level bottom up. Skip
List merging uses a similar algorithm.

For Masstree and ART, merging uses recursive algorithms. Fig-
ure 10 shows the pseudo code for merging Masstree to Compact
Masstree. The algorithm is a combination of merging sorted arrays
and merging tries. We define three merge tasks that serve as build-
ing blocks for the merge process: merge two trie nodes, insert an
item into a trie node, and create a trie node to hold two items. Note
that the “==” sign between items in the pseudo code means that
they have equivalent keyslices.

The initial task is to merge the root nodes of the two tries, as
shown in the merge_nodes(root_m, root_n) function in Figure 10.
Merging any two trie nodes, including the root nodes, involves
merging the sorted arrays of keys within the nodes. Conceptually,
the algorithm proceeds as in a typical merge sort, except that it re-

merge_nodes(node m, n, parent):	

 //merge the sorted arrays together	

 merge_arrays(m, n)	

 link n to parent	

	

merge_arrays(node m, n):	

 //2 running cursors: x for m, y for n	

 for item x in m and item y in n:	

 if x == y: //equal keyslice	

 recursively invoke:	

 case 1: both x and y have child:	

 merge_nodes(x.child, y.child, n)	

 case 2: x has child, y has suffix:	

 add_item(y.suffix, x.child, n)	

 case 3: y has child, x has suffix:	

 add_item(x.suffix, y.child, n)	

 case 4: x.suffix != y.suffix:	

 create_node(x.suffix, y.suffix, n)	

 else	

 move min(x, y) to new position in n	

add_item(item x, node n, parent):	

 //insert item x to the sorted arrays in n	

 insert_one(x, n)	

 link n to parent	

	

insert_one(item x, node n):	

 if x == (any item y in n):	

 recursively invoke:	

 case 1: y has child:	

 add_item(x.suffix, y,child, n)	

 case 2: y has suffix:	

 create_node(x.suffix, y.suffix, n)	

 else	

 insert x to appropriate position in n	

	

create_node(item x, y, node parent):	

 //create a new node to hold x and y	

 n = new_node(x, y)	

 if x == y:	

 create_node(x.suffix, y.suffix, n) 	

 link n to parent	

Figure 10: Algorithm of merging Masstree to Compact Masstree – A
recursive algorithm that combines trie traversal and merge sort.

1:1 1:20 1:40 1:60 1:80 1:100
Merge Ratio (Dynamic:Static)

0
1
2
3
4
5
6
7
8

Th
ro

ug
hp

ut
(M

op
s/

s)
smaller dynamic stage

more frequent merges

insert
read

Figure 11: Merge Ratio – A sensitivity analysis of hybrid index’s ratio-
based merge strategy. The index used in this analysis is Hybrid B+tree.

cursively (depth-first) creates new tasks when the child nodes (or
suffixes) require further merging. The merge process ends once the
root node merge completes.

Merging ART to Compact ART adopts a slightly more compli-
cated recursive algorithm. Instead of checking the key suffixes di-
rectly within the node (as in Masstree), ART has to load the full
keys from the records and extract the suffixes based on the current
trie depth. The two optimizations (lazy expansion and pass com-
pression) in ART [37] further complicates the algorithm because
child nodes of the same parent can be at different levels.

C. SENSITIVITY ANALYSIS OF RATIO-
BASED MERGE STRATEGY

This section extends Section 6.3 by providing a sensitivity anal-
ysis of the ratio-based merge strategy. To determine a good de-
fault merge ratio that balances read and write throughput, we use
the insert-only workload followed by the read-only workload with
64-bit integer keys to test ratios ranging from 1 to 100. For each
ratio setting, we adjust the number of entries inserted so that the dy-
namic stage is about 50% “full” right before the read-only workload
starts. We measure the average throughput of the hybrid index for
the insert-only and read-only phases separately for each ratio. We
only show the results for hybrid B+tree because they are sufficient

insert-only read/update read-only scan/insert
0

1

2

3

4

5
Th

ro
ug

hp
ut

(M
op

s/
s)

4.
17

2.
90

2.
58

1.
28

3.
68

2.
92

2.
35

0.
88

B+tree
Hybrid

(a) Throughput

random int mono inc int email
0

5

10

15

20

25

30

35

40

45

M
em

or
y(

G
B

)

13
.4

17
.8

36
.1

5.
5

5.
7 8.

1

B+tree
Hybrid

(b) Memory

Figure 13: Hybrid Index vs. Original (Secondary Indexes) – Through-
put and memory measurements for different YCSB workloads using 64-bit
random integer keys when the data structures are used as secondary (i.e.,
non-unique) indexes. The data set contains 10 values for each unique key.

insert-only read/write read-only scan/insert
0

2

4

6

8

10

12

Th
ro

ug
hp

ut
(M

op
s/

s)

2.
12

5.
13 5.

66

1.
86

1.
25

7.
45

3.
23

1.
061.
30

6.
19

5.
38

1.
04

0.
49

6.
37

1.
52

0.
42

0.
49

5.
90

1.
95

0.
42

0.
52

6.
43

2.
57

0.
50

0.
50

5.
81

3.
81

0.
50

B+tree
Hybrid
Hybrid + bloom
Hybrid-Compressed
Hybrid-Compressed + bloom
Hybrid-Compressed + node cache
Hybrid-Compressed + bloom + node cache

Figure 12: Auxiliary Structures – This figure is an extended version of
the figure in the (B+tree Primary, 64-bit random int) cell of Figure 7 that
shows the effects of the Bloom filter and the node cache in the hybrid index
architecture.

to demonstrate the relationship between read/write throughput and
merge ratio.

The results in Figure 11 show that a larger merge ratio leads
to slightly higher read throughput and lower write throughput. A
larger ratio keeps the dynamic stage smaller, thereby speeding up
traversals in the dynamic stage. But it also triggers merges more
frequently, which reduces the write throughput. As the merge ra-
tio increases, the write throughput decreases more quickly than
the read throughput increases. Since OLTP workloads are gener-
ally write-intensive, they benefit more from a relatively small ratio.

Based on this finding, we use 10 as the merge ratio for all indexes
in the subsequent experiments in this paper.

D. AUXILIARY STRUCTURES
This section is an extension of Section 6.4, where we show the ef-
fects of two auxiliary structures presented in the hybrid index archi-
tecture: Bloom filter (see Figure 1) and node cache (see Figure 2).
We extend the experiment shown in the (B+tree Primary, 64-bit ran-
dom int) cell of Figure 7 by making the inclusion of Bloom filter or
node cache controlled variables to show separately their effects on
performance.

Figure 12 presents the results. We first focus on the read-only
workload. For all variants of the hybrid index, the throughput im-
proves significantly when adding the Bloom filter; similarly, adding
a node cache also improves throughput over the same index vari-
ant without a node cache. In addition, Bloom filter and node cache
improve read performance without noticeable overhead for other
non-read-only workloads.

E. SECONDARY INDEXES EVALUATION
This section is an extension of Section 6.4, where we provide the
experiment results for hybrid indexes used as secondary indexes.
The experiment setup is described in Section 6.4. We insert ten
values (instead of one, as in primary indexes) for each unique key.
Because we implement multi-value support for all indexes in the
same way (described in Section 4.2), we only show the result for
hybrid B+tree in the 64-bit random integer key case as a represen-
tative to demonstrate the differences between using hybrid indexes
as primary and secondary indexes.

As shown in Figure 13, the secondary index results are consis-
tent with the primary index findings with several exceptions. First,
the insert throughput gap between the original and hybrid B+tree
shrinks because secondary indexes do not require a key-uniqueness
check for an insert, which is the main reason for the slowdown
in the primary index case. Second, hybrid B+tree loses its large
throughput advantage in the read/write (i.e., update-heavy) work-
load case because it handles these value updates in-place rather
than inserting new entries into the dynamic stage (as for primary
indexes). In-place updates prevent the same key from appearing in
both stages with different sets of values, which would require a hy-
brid index to search both stages to construct a complete value list
for a key. Third, the memory savings of hybrid B+tree are more
significant in the secondary index case because the original B+tree
stores duplicate keys while Compact B+tree does not.

	Introduction
	The Case for Hybrid Indexes
	The Dual-Stage Architecture
	Dynamic-to-Static Rules
	Example Data Structures
	Rule #1: Compaction
	Rule #2: Structural Reduction
	Rule #3: Compression

	Merge
	Merge Algorithm
	Merge Strategy

	Microbenchmark Evaluation
	Experiment Setup & Benchmarks
	Compaction & Compression Evaluation
	Merge Strategies & Overhead
	Hybrid Indexes vs. Originals

	Full DBMS Evaluation
	H-Store Overview
	Benchmarks
	In-Memory Workloads
	Larger-than-Memory Workloads

	Related Work
	Future Work
	Conclusion
	References
	Index Types
	Detailed Merge Algorithms
	Sensitivity Analysis of Ratio-based Merge Strategy
	Auxiliary Structures
	Secondary Indexes Evaluation

