
Justin DeBrabant

Big and Fast 
Anti-Caching in OLTP Systems

Online Transaction Processing

2

transaction-oriented

small footprint

write-intensive

3

A bit of history…

4

1972

relational model

1993

OLAP

rise of the web

Ingres/System R

2015

“end of an era”

OLTP Through the Years

Modern OLTP Requirements

5

1. web-scale (big)

2. high-throughput (fast)

Thesis Motivation

▸ traditional disk-based architectures
aren’t fast enough

6

▸newer main memory architectures
aren’t big enough

7

Can we have main-
memory performance for

larger-than-memory
datasets?

Thesis Overview: Contributions
1. anti-caching architecture
‣ larger than memory datasets in main

memory DBMS

2. anti-caching + persistent memory
‣ exploring next-generation hardware and

OLTP systems

8

Outline
▸ Introduction

9

▸Overview and Motivation
▸Anti-Caching Architecture
▸Memory Optimizations
▸Anti-Caching on NVM
▸Future Work and Conclusions

Disk-Oriented Architectures

▸assumption: data won’t fit in memory

▸disk-resident data, main memory
buffer pool for execution

▸concurrency is a must

▸ transaction serialization and locks

10

11

pr
ic

e
pe

r
G

B
($

)

1E+00

1E+05

1E+10

1970 1973 1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012

Memory Costs

Now What?

1. DBMS buffer pool

12

2. distributed cache

3. in-memory DBMS

Buffer Pool
▸must still…
‣maintain buffer pool
‣ lock/latch data
‣maintain ARIES-style recovery logs

▸question: What is the overhead of
all these things?

13

14

OLTP Through the Looking Glass,
and What We Found There 
SIGMOD ‘08

12%

26%

31%

31%

Buffer Pool
Locking
Recovery
Real Work

Now What?

1. DBMS buffer pool

15

2. distributed cache

3. in-memory DBMS

16

Cache Layer

Persistence Layer

Main Memory Cache

▸ fast and scalable, but…

17

▸ key-value interface
▸ not ACID (AI, not CD)

Consistency and Durability

▸ reads are easy, writes are not

▸ multiple copies of data

▸ application’s responsibility

18

▸ for OLTP, writes are common
and consistency is essential

Now What?

1. DBMS buffer pool

19

2. distributed cache

3. in-memory DBMS

20

H-Store Architecture
▸partitioned, shared-nothing
▸single-threaded main memory

execution
‣ no need for locks and latches

▸ lightweight recovery
‣ snapshots + command log

21

22

23

data > memory? virtual memory!

24

persistent storage

Big and Fast

big: disk-oriented

25

fast: memory-oriented
big and fast: anti-caching

26

OLTP workloads are
 skewed

Design Principles
▸ asynchronous disk fetches
‣ don’t block

▸maintain ordering of evicted data
accesses
‣ ensures transactional consistency

▸ single copy of data
‣ consistency is free

▸ efficient memory use, no swizzling

27

Outline
▸ Introduction

28

▸Anti-Caching Architecture
▸Overview and Motivation

▸Memory Optimizations
▸Anti-Caching on NVM
▸Future Work and Conclusions

Architectural Overview
▸memory is primary storage, cold

data is evicted to disk-based anti-
cache

▸ reading data from the anti-cache is
done in 3 phases
‣ avoids blocking, ensures consistency

29

Anti-Caching Phases
▸evict

▸pre-pass

▸ fetch

▸merge

30

Evict
1. data > anti-cache threshold
2. dynamically construct anti-

cache blocks of coldest tuples
3. asynchronously write to disk

31

Pre-Pass
1. a transaction enters pre-pass when

evicted data is accessed
2. continues execution, creating list

of evicted blocks
3. abort, queue blocks to be fetched

32

Fetch
1. data is fetched asynchronously

from disk
‣ avoids blocking

2. moved into merge buffer

33

Merge
1. data is moved from in-memory

merge buffer to in-memory table
2. previously aborted transaction is

restarted
3. transaction executes normally

34

Anti-Caching Phase: EvictAnti-Caching Phase: Pre-PassAnti-Caching Phase: FetchAnti-Caching Phase: Merge

anti-cache

Tracking Access Patterns
▸done online, more responsive to

changes in workload

▸goal is low CPU and memory
overhead

▸approximate ordering is OK

36

Approximate LRU (aLRU)
▸maintain LRU chain embedded in

tuple headers

▸per-partition

▸ transactions that update LRU chain
are sampled randomly

▸ configurable sample rate

37

Anti-Caching vs. Swapping
▸ fine-grained eviction

▸ blocks constructed dynamically

▸ asynchronous batched fetches

▸ possible because of transactions

38

Anti-Caching vs. Caching
▸data exists in exactly one location
‣ caching architectures have multiple

copies, must maintain consistency

‣ data is moved, not copied

▸goal is increased data size, not
throughput

39

Benchmarking
▸YCSB

▸Zipfian skew

▸data > memory

▸ read/write mix

▸MySQL, MySQL + memcached

40

YCSB, read-only, data 8X memory

41

th
ro

ug
hp

ut
 (t

xn
/s

)

0

30000

60000

90000

120000

workload skew (high —> low)
1.5 1.25 1 0.75 0.5

anti-cache MySQL MySQL + memcached

YCSB, read-heavy, data 8X memory

42

th
ro

ug
hp

ut
 (t

xn
/s

)

0

30000

60000

90000

120000

workload skew (high —> low)
1.5 1.25 1 0.75 0.5

anti-cache MySQL MySQL + memcached

Tracking Accesses Revisited
▸approximate ordering is OK

▸original implementation

▸ aLRU (linked list)

▸compute vs. memory

43

Can we reduce the memory overhead?

Timestamp-Based Eviction
▸ use relative timestamps to track

accesses

▸ to evict, take subset of tuples and evict
based on timestamp age

▸questions:

▸ timestamp granularity

▸ sample size (power of two)
44

Timestamp Granularity
▸4 byte timestamps

▸ use instruction counter

▸2 byte timestamps

▸use epochs, set the timestamp to
the current epoch

45

YCSB, read-heavy, data 8X

46

th
ro

ug
hp

ut
 (t

xn
/s

)

0

22500

45000

67500

90000

workload skew (high —> low)
1.5 1.25 1 0.75 0.5

aLRU chain timestamp-low timestamp-high

Key Take-Aways
▸8-17X improvement for

skewed workloads at larger-
than-memory data sizes

▸disk becomes the bottleneck
for lower skew

47

Hardware Assumptions are Key
▸heavily influence system

architectures

▸many factors

▸ capacity

▸ latency

▸ volatility

48

49

What’s next for OLTP?

50

Non-Volatile Memory

Properties of NVM
▸non-volatile

▸ random-access

▸high write endurance
‣ except flash

▸byte-addressable
‣ except flash

51

The NVM Arms Race
▸FeRAM
‣ high write endurance

▸MRAM
‣DRAM-like latency

▸PCM (PRAM)
‣DRAM-like capacity

52

Looking Forward…
▸OLTP architectures and NVM
‣ anti-cache architecture

‣ disk-based architecture

▸open questions
‣Which architecture is best suited for NVM?

‣What adaptations are needed?

53

NVM Emulation
▸goal: provide product-independent

analysis

▸ test wide range of latency profiles

▸automatically add specified latency

▸built by collaborators at Intel

54

Anti-Caching on NVM
▸ replace disk with NVM

▸several adaptations necessary

▸ lightweight array-based anti-cache

▸utilizes mmap interface

▸ fine-grained block and tuple
eviction interface

55

Disk-Oriented Architectures on NVM

▸must adapt both storage and log
files to be use NVM mmap interface

▸configure to use fine-grained buffer
pool pages

56

YCSB, read-only, data 8X

57

th
ro

ug
hp

ut
 (t

xn
/s

)

0

45000

90000

135000

180000

workload skew (high —> low)
1.5 1.25 1 0.75 0.5

anti-caching MySQL

YCSB, read-heavy, data 8X

58

th
ro

ug
hp

ut
 (t

xn
/s

)

0

45000

90000

135000

180000

workload skew (high —> low)
1.5 1.25 1 0.75 0.5

anti-caching MySQL

59

Future Work

Multi-Tier Architectures
▸DRAM -> NVM -> Disk/SSD

▸open questions

▸ indexing structures

▸synchronous/asynchronous
fetches

60

Anti-Caching Indexes
▸ index size can be significant

▸can cold index ranges be evicted to
an anti-cache?

▸open questions

▸ how/what to evict

▸ execution changes

61

Semantic Anti-Caching

▸current implementation makes no
assumption about types of skew

▸skew typically as semantic meaning

▸ e.g., temporal, spatial

▸can we leverage these domain
semantics?

62

Conclusions
▸anti-caching architecture outperforms

and outscales previous OLTP
architectures

▸well-suited for next-generation NVM-
based architectures

63

64

Questions?  
 

debrabant@cs.brown.edu 

65

