Big and Fast

Anti-Caching in OLTP Systems

Justin DeBrabant
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Online Transaction Processing

transaction-oriented

small footprint

write-intensive
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OLTP Through the Years

relational model

: rise of the web

Ingres/System R

OLAP "end of an era”
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Modern OLTP Requirements

1. web-scale (big)
2. high-throughput (fast)
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Thesis Motivation

» traditional disk-based architectures
aren’t fast enough

» newer main memory architectures
aren’t big enough
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Can we have main-
memory performance for
larger-than-memory
datasets?
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Thesis Overview: Contributions

1. anti-caching architecture

» larger than memory datasets in main
memory DBMS

2. anti-caching + persistent memory

» exploring next-generation hardware and
OLTP systems
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Outline

» Introduction
» Overview and Motivation

» Anti-Caching Architecture
» Memory Optimizations
» Anti-Caching on NVM

» Future Work and Conclusions
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Disk-Oriented Architectures

» assumption: data won't fit in memory

» disk-resident data, main memory
buffer pool for execution

» concurrency is a must
» transaction serialization and locks
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Now What?

1. DBMS buffer pool
2. distributed cache
3. in-memory DBMS
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Buffer Pool

» must still...

» maintain buffer pool
» lock/latch data
» maintain ARIES-style recovery logs

» question: What is the overhead of
all these things?
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Buffer Pool
® Locking

Recovery
O Real Work

267

OLTP Through the Looking Glass,

and What We Found There
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Now What?

1. DBMS buffer pool
2. distributed cache
3. in-memory DBMS

BROWN

Database Group

15



Cache Layer

Persistence Layer
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Main Memory Cache

» fast and scalable, but...
» key-value interface
» not ACID (Al, not CD)
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Consistency and Durability

» reads are easy, writes are not

» multiple copies of data
» application’s responsibility

» for OLTP, writes are common
and consistency is essential
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Now What?

1. DBMS buffer pool
2. distributed cache
3. in-memory DBMS
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H-Store Architecture

» partitioned, shared-nothing

» single-threaded main memory
execution
» no need for locks and latches

» lightweight recovery

» snapshots + command log
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Big and Fast

big: disk-oriented
fast: memory-oriented
big and fast: anti-caching
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OLTP workloads are
skewed
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Design Principles

» asynchronous disk fetches
» don’t block

» maintain ordering of evicted data
aCCessSes
» ensures transactional consistency

» single copy of data
» consistency is free

» efficient memory use, no swizzling
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Outline

» Introduction
» Overview and Motivation

» Anti-Caching Architecture

» Memory Optimizations
» Anti-Caching on NVM

» Future Work and Conclusions
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Architectural Overview

» memory is primary storage, cold
data is evicted to disk-based anti-
cache

» reading data from the anti-cache is

done in 3 phases
» avoids blocking, ensures consistency
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Anti-Caching Phases
» evict

) pre-pass
» fetch
» merge
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Evict
1. data > anti-cache threshold

2. dynamically construct anti-
cache blocks of coldest tuples

3. asynchronously write to disk
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Pre-Pass

1. a transaction enters pre-pass when
evicted data is accessed

2. continues execution, creating list
of evicted blocks

3. abort, queue blocks to be fetched
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Fetch

1. data is fetched asynchronously

from disk
» avoids blocking

2. moved into merge buffer
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Merge
1. data is moved from in-memory
merge buffer to in-memory table

2. previously aborted transaction is
restarted

3. transaction executes normally
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Tracking Access Patterns

» done online, more responsive to
changes in workload

» goal is low CPU and memory
overhead

» approximate ordering is OK
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Approximate LRU (aLRU)

» maintain LRU chain embedded in
tuple headers

» per-partition
» transactions that update LRU chain
are sampled randomly

» configurable sample rate

OAAN

" Database Group

37



aE?

Anti-Caching vs. Swapping

» fine-grained eviction
» blocks constructed dynamically

» asynchronous batched fetches

» possible because of transactions
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Anti-Caching vs. Caching

» data exists in exactly one location

» caching architectures have multiple
copies, must maintain consistency

» data is moved, not copied

» goal is increased data size, not
throughput
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Benchmarking
» YCSB

» Zipfian skew
» data > memory

» read/write mix
» MySQL, MySQL + memcached
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YCSB, read-only, data 8X memory

anti-cache MySQL MySQL + memcached
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YCSB, read-heavy, data 8X memory

anti-cache MySQL MySQL + memcached
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Tracking Accesses Revisited

» approximate ordering is OK
» original implementation
» aLRU (linked list)

) compute vs. memory

Can we reduce the memory overhead?
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Timestamp-Based Eviction
» use relative timestamps to track
accesses

» to evict, take subset of tuples and evict
based on timestamp age

» questions:
» timestamp granularity
» sample size (power of two)
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Timestamp Granularity

» 4 byte timestamps
» use instruction counter
» 2 byte timestamps

» use epochs, set the timestamp to
the current epoch
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YCSB, read-heavy, data 8X

aLRU chain timestamp-low timestamp-high
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Key Take-Aways
» 8-17X improvement for

skewed workloads at larger-
than-memory data sizes

» disk becomes the bottleneck
for lower skew
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Hardware Assumptions are Key

» heavily influence system
architectures

» many factors
» capacity
» latency
» volatility
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What's next for OLTP?
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Non-Volatile Memory
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Properties of NVM

» non-volatile
» random-access

» high write endurance
» except flash

» byte-addressable

» except flash
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The NVM Arms Race
» FeRAM

» high write endurance

» MRAM
» DRAM-like latency

» PCM (PRAM)
» DRAM-like capacity
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Looking Forward...
» OLTP architectures and NVM

» anti-cache architecture
» disk-based architecture

» open questions

» Which architecture is best suited for NVM?
» What adaptations are needed?
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NVM Emulation

» goal: provide product-independent
analysis

» test wide range of latency profiles

» automatically add specified latency

» built by collaborators at Intel
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Anti-Caching on NVM
» replace disk with NVM
» several adaptations necessary
» lightweight array-based anti-cache
» utilizes mmap interface

» fine-grained block and tuple
eviction interface
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Disk-Oriented Architectures on NVM

» must adapt both storage and log
files to be use NVM mmap interface

» configure to use fine-grained buffer
pool pages
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YCSB, read-only, data 8X

MySQL

anti-caching
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YCSB, read-heavy, data 8X

MySQL

anti-caching
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Future Work
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Multi-Tier Architectures
» DRAM -> NVM -> Disk/SSD
» open questions
» indexing structures

» synchronous/asynchronous
fetches
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Anti-Caching Indexes
» index size can be significant

» can cold index ranges be evicted to
an anti-cache?

» open questions
» how/what to evict
» execution changes
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Semantic Anti-Caching

» current implementation makes no
assumption about types of skew

» skew typically as semantic meaning
» e.g., temporal, spatial

» can we leverage these domain
semantics?
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Conclusions

» anti-caching architecture outperforms
and outscales previous OLTP
architectures

» well-suited for next-generation NVM-
based architectures
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Questions?

debrabant@cs.brown.edu
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