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Online Transaction Processing 
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transaction-oriented 

small footprint

write-intensive
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A bit of history…



4

1972

relational model

1993

OLAP

rise of the web

Ingres/System R

2015

“end of an era”

OLTP Through the Years



Modern OLTP Requirements
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1. web-scale (big)

2. high-throughput (fast)



Thesis Motivation

▸ traditional disk-based architectures 
aren’t fast enough
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▸newer main memory architectures 
aren’t big enough
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Can we have main-
memory performance for  

larger-than-memory 
datasets?



Thesis Overview: Contributions
1. anti-caching architecture 
‣ larger than memory datasets in main 

memory DBMS 

2. anti-caching + persistent memory 
‣ exploring next-generation hardware and 

OLTP systems
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Outline
▸ Introduction  
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▸Overview and Motivation 
▸Anti-Caching Architecture  
▸Memory Optimizations  
▸Anti-Caching on NVM  
▸Future Work and Conclusions  



Disk-Oriented Architectures

▸assumption: data won’t fit in memory  

▸disk-resident data, main memory 
buffer pool for execution 

▸concurrency is a must   

▸  transaction serialization and locks 
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Now What? 

1. DBMS buffer pool
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2. distributed cache

3. in-memory DBMS



Buffer Pool
▸must still… 
‣maintain buffer pool 
‣ lock/latch data 
‣maintain ARIES-style recovery logs 

▸question: What is the overhead of 
all these things? 
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OLTP Through the Looking Glass,  
and What We Found There 
SIGMOD ‘08 
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Locking
Recovery
Real Work



Now What? 

1. DBMS buffer pool
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2. distributed cache

3. in-memory DBMS
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Cache Layer

Persistence Layer



Main Memory Cache

▸  fast and scalable, but…
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▸  key-value interface 
▸  not ACID (AI, not CD)



Consistency and Durability

▸ reads are easy, writes are not 

▸  multiple copies of data 

▸ application’s responsibility 
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▸  for OLTP, writes are common 
and consistency is essential



Now What? 

1. DBMS buffer pool
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2. distributed cache

3. in-memory DBMS
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H-Store Architecture 
▸partitioned, shared-nothing 
▸single-threaded main memory 

execution  
‣ no need for locks and latches 

▸ lightweight recovery  
‣ snapshots + command log
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data > memory? virtual memory!
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persistent storage



Big and Fast

big: disk-oriented 
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fast: memory-oriented 
big and fast: anti-caching 
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OLTP workloads are 
 skewed



Design Principles 
▸ asynchronous disk fetches  
‣ don’t block  

▸maintain ordering of evicted data 
accesses 
‣ ensures transactional consistency 

▸ single copy of data  
‣ consistency is free 

▸ efficient memory use, no swizzling   
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Outline
▸ Introduction  
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▸Anti-Caching Architecture 
▸Overview and Motivation 

▸Memory Optimizations  
▸Anti-Caching on NVM  
▸Future Work and Conclusions  



Architectural Overview
▸memory is primary storage, cold 

data is evicted to disk-based anti-
cache 

▸ reading data from the anti-cache is 
done in 3 phases 
‣ avoids blocking, ensures consistency 
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Anti-Caching Phases
▸evict 

▸pre-pass 

▸ fetch  

▸merge
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Evict
1. data > anti-cache threshold 
2. dynamically construct anti-

cache blocks of coldest tuples 
3. asynchronously write to disk
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Pre-Pass
1. a transaction enters pre-pass when 

evicted data is accessed 
2. continues execution, creating list 

of evicted blocks 
3. abort, queue blocks to be fetched
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Fetch
1. data is fetched asynchronously 

from disk 
‣ avoids blocking 

2. moved into merge buffer
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Merge
1. data is moved from in-memory 

merge buffer to in-memory table 
2. previously aborted transaction is 

restarted 
3. transaction executes normally
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Anti-Caching Phase: EvictAnti-Caching Phase: Pre-PassAnti-Caching Phase: FetchAnti-Caching Phase: Merge

anti-cache



Tracking Access Patterns
▸done online, more responsive to 

changes in workload 

▸goal is low CPU and memory 
overhead   

▸approximate ordering is OK
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Approximate LRU (aLRU)
▸maintain LRU chain embedded in 

tuple headers 

▸per-partition 

▸ transactions that update LRU chain 
are sampled randomly 

▸   configurable sample rate  
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Anti-Caching vs. Swapping
▸ fine-grained eviction  

▸  blocks constructed dynamically  

▸ asynchronous batched fetches 

▸ possible because of transactions 
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Anti-Caching vs. Caching
▸data exists in exactly one location 
‣ caching architectures have multiple 

copies, must maintain consistency 

‣ data is moved, not copied 

▸goal is increased data size, not 
throughput 
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Benchmarking
▸YCSB 

▸Zipfian skew 

▸data > memory 

▸ read/write mix 

▸MySQL, MySQL + memcached
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YCSB, read-only, data 8X memory
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YCSB, read-heavy, data 8X memory
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Tracking Accesses Revisited
▸approximate ordering is OK  

▸original implementation 

▸  aLRU (linked list)  

▸compute vs. memory 
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Can we reduce the memory overhead?



Timestamp-Based Eviction
▸ use relative timestamps to track 

accesses  

▸ to evict, take subset of tuples and evict 
based on timestamp age  

▸questions:  

▸ timestamp granularity  

▸ sample size (power of two)
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Timestamp Granularity
▸4 byte timestamps 

▸  use instruction counter   

▸2 byte timestamps  

▸use epochs, set the timestamp to 
the current epoch 
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YCSB, read-heavy, data 8X 
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Key Take-Aways
▸8-17X improvement for 

skewed workloads at larger-
than-memory data sizes 

▸disk becomes the bottleneck 
for lower skew 
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Hardware Assumptions are Key
▸heavily influence system 

architectures  

▸many factors  

▸  capacity   

▸  latency  

▸  volatility 
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What’s next for OLTP? 
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Non-Volatile Memory



Properties of NVM
▸non-volatile 

▸ random-access 

▸high write endurance 
‣ except flash 

▸byte-addressable 
‣ except flash 
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The NVM Arms Race
▸FeRAM 
‣ high write endurance 

▸MRAM 
‣DRAM-like latency 

▸PCM (PRAM) 
‣DRAM-like capacity  
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Looking Forward…
▸OLTP architectures and NVM 
‣ anti-cache architecture 

‣ disk-based architecture 

▸open questions 
‣Which architecture is best suited for NVM? 

‣What adaptations are needed?  
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NVM Emulation
▸goal: provide product-independent 

analysis 

▸ test wide range of latency profiles 

▸automatically add specified latency 

▸built by collaborators at Intel 
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Anti-Caching on NVM
▸ replace disk with NVM  

▸several adaptations necessary 

▸ lightweight array-based anti-cache 

▸utilizes mmap interface  

▸ fine-grained block and tuple 
eviction interface 
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Disk-Oriented Architectures on NVM

▸must adapt both storage and log 
files to be use NVM mmap interface 

▸configure to use fine-grained buffer 
pool pages  
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YCSB, read-only, data 8X
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YCSB, read-heavy, data 8X
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Future Work



Multi-Tier Architectures
▸DRAM -> NVM -> Disk/SSD 

▸open questions 

▸  indexing structures  

▸synchronous/asynchronous 
fetches
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Anti-Caching Indexes
▸ index size can be significant  

▸can cold index ranges be evicted to 
an anti-cache?  

▸open questions 

▸  how/what to evict  

▸  execution changes 
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Semantic Anti-Caching 

▸current implementation makes no 
assumption about types of skew  

▸skew typically as semantic meaning  

▸   e.g., temporal, spatial 

▸can we leverage these domain 
semantics? 
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Conclusions
▸anti-caching architecture outperforms 

and outscales previous OLTP 
architectures  

▸well-suited for next-generation NVM-
based architectures 
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Questions?  
 

debrabant@cs.brown.edu 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