Problem: How do we make OLTP workloads go 10x faster?
Solution: Single thread execution; Partitioning; Avoid locks; Use speculation

Traditional Concurrency	Our Approach: H-Store	% CPU Cycles (Shore)
Idle Resources:		8.1%
• Wait for disk	• Main memory	B-Tree Keys
• Wait for user	• Stored procedures	Logging
Physical Concurrency:		21.0%
• Multiple CPUs, disks	• Multiple partitions	Locking
	18.7%	Latching
	10.2%	Buffer Pool
	29.6%	Application
	12.3%	

Single Partition Transactions
No locks, no undo logging: no overhead

Multi-Partition Transactions
Two-phase commit; network stall (bad)

Low Overhead Concurrency Control: Do useful work during network stall

Speculation: Speculate next transactions during stall, after txn is prepared
• Best for simple multi-partition transactions: one round of work on partitions
Locking: Don't acquire locks if only executing single partition transactions
• Best for workloads with complex transactions; inter-partition communication

Experimental Results
Microbenchmark: Two partitions; Change fraction of multi-partition transactions
TPC-C like: Two partitions varying the number of warehouses