OLTP on the NVM SDV: YMMV

Joy Arulraj (CMU), Justin DeBrabant (Brown), Andrew Pavlo (CMU), Michael Stonebraker (MIT), Col. Stan Zdonik (Brown)

ANTI-CACHING ON NVM

- Recovery mechanism
 - Snapshot of table and index data, including anti-caching structures, persisted on NVM
 - Command-log (for redo) persisted on NVM
 - Recovery restores state from latest snapshot and replays transactions in command log
- Implementation
 - Asynchronous fine-grained eviction of coldest tuples from DRAM to NVM (LRU policy)
 - Data exists in exactly one location
 - Non-blocking data fetches on demand

DIRECT NVM

- Recovery mechanism
 - Table and index data persisted directly on NVM
 - No need for command logging
 - Recovery undoes uncommitted transactions
- Implementation
 - MMAP-based storage manager directly uses persistent memory file system
 - STL allocator based on MMAP storage manager
 - Table, Index and Pool data persisted directly on NVM

EXPERIMENTAL RESULTS

SETUP

- Intel NVM Emulator
 - Instrumented motherboard emulates NVM latency
 - 62 GB DRAM with tunable latency
- Persistent Memory File System
 - Efficient mmap interface to persistent memory
 - Internally uses CPU load/store instructions

- YCSB Benchmark
 - Zipfian skew in record accesses
 - Update Heavy (50% Updates, 50% Reads)

FINDINGS

- Anti-Caching on NVM
 - 1.6X improvement for skewed workloads over disk-based architecture
 - Better utilization of memory hierarchy
- Direct NVM
 - 4.5X improvement for skewed workloads over disk-based architecture
 - Throughput constrained by msync overhead

FUTURE WORK

- Anti-Caching on NVM
 - Reduced memory overhead (Bloom filters)
 - Relaxed consistency for OLAP workloads
 - Intelligent eviction strategies
 - Block reorganization
 - Multi-tiered storage
- Direct NVM
 - Need a new design
 - Concurrency control protocol
 - Recovery mechanism