
Clay: Fine-Grained Adaptive Partitioning
for General Database Schemas

Marco Serafini△, Rebecca Taft�, Aaron J. Elmore♣,
Andrew Pavlo♠, Ashraf Aboulnaga△, Michael Stonebraker�

△Qatar Computing Research Institute ­ HBKU, �Massachusetts Institute of Technology,
♣University of Chicago, ♠Carnegie Mellon University

mserafini@qf.org.qa, rytaft@mit.edu, aelmore@cs.uchicago.edu,
pavlo@cs.cmu.edu, aaboulnaga@qf.org.qa, stonebraker@csail.mit.edu

ABSTRACT

Transaction processing database management systems (DBMSs)

are critical for today’s data-intensive applications because they en-

able an organization to quickly ingest and query new information.

Many of these applications exceed the capabilities of a single server,

and thus their database has to be deployed in a distributed DBMS.

The key factor affecting such a system’s performance is how the

database is partitioned. If the database is partitioned incorrectly, the

number of distributed transactions can be high. These transactions

have to synchronize their operations over the network, which is

considerably slower and leads to poor performance. Previous work

on elastic database repartitioning has focused on a certain class of

applications whose database schema can be represented in a hierar-

chical tree structure. But many applications cannot be partitioned

in this manner, and thus are subject to distributed transactions that

impede their performance and scalability.

In this paper, we present a new on-line partitioning approach,

called Clay, that supports both tree-based schemas and more com-

plex “general” schemas with arbitrary foreign key relationships.

Clay dynamically creates blocks of tuples to migrate among servers

during repartitioning, placing no constraints on the schema but tak-

ing care to balance load and reduce the amount of data migrated.

Clay achieves this goal by including in each block a set of hot tuples

and other tuples co-accessed with these hot tuples. To evaluate our

approach, we integrate Clay in a distributed, main-memory DBMS

and show that it can generate partitioning schemes that enable the

system to achieve up to 15× better throughput and 99% lower la-

tency than existing approaches.

1. INTRODUCTION
Shared-nothing, distributed DBMSs are the core component for

modern on-line transaction processing (OLTP) applications in many

diverse domains. These systems partition the database across mul-

tiple nodes (i.e., servers) and route transactions to the appropriate

nodes based on the data that these transactions touch. The key to

achieving good performance is to use a partitioning scheme (i.e., a

mapping of tuples to nodes) that (1) balances load and (2) avoids

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 4
Copyright 2016 VLDB Endowment 2150­8097/16/12.

expensive multi-node transactions [5, 23]. Since the load on the

DBMS fluctuates, it is desirable to have an elastic system that auto-

matically changes the database’s partitioning and number of nodes

dynamically depending on load intensity and without having to stop

the system.

The ability to change the partitioning scheme without disrupt-

ing the database is important because OLTP systems incur fluctu-

ating loads. Additionally, many workloads are seasonal or diurnal,

while other applications are subject to dynamic fluctuations in their

workload. For example, the trading volume on the NYSE is an

order of magnitude higher at the beginning and end of the trading

day, and transaction volume spikes when there is relevant breaking

news. Further complicating this problem is the presence of hotspots

that can change over time. These occur because the access pattern

of transactions in the application’s workload is skewed such that

a small portion of the database receives most of the activity. For

example, half of the NYSE trades are on just 1% of the securities.

One could deal with these fluctuations by provisioning for ex-

pected peak load. But this requires deploying a cluster that is over-

provisioned by at least an order of magnitude [27]. Furthermore, if

the performance bottleneck is due to distributed transactions caus-

ing nodes to wait for other nodes, then adding servers will be of

little or no benefit. Thus, over-provisioning is not a good alterna-

tive to effective on-line reconfiguration.

Previous work has developed techniques to automate DBMS re-

configuration for unpredictable OLTP workloads. For example,

Accordion [26], ElasTras [6], and E-Store [28] all study this prob-

lem. These systems assume that the database is partitioned a pri-

ori into a set of static blocks, and all tuples of a block are moved

together at once. This does not work well if transactions access

tuples in multiple blocks and these blocks are not colocated on the

same server. One study showed that a DBMS’s throughput drops

by half from its peak performance with only 10% of transactions

distributed [23]. This implies that minimizing distributed transac-

tions is just as important as balancing load when finding an optimal

partitioning plan. To achieve this goal, blocks should be defined

dynamically so that tuples that are frequently accessed together are

grouped in the same block; co-accesses within a block never gener-

ate distributed transactions, regardless of where blocks are placed.

Another problem with the prior approaches is that they only work

for tree schemas. This excludes many applications with schemas

that cannot be transposed into a tree and where defining static blocks

is impossible. For example, consider the Products-Parts-Suppliers

schema shown in Figure 1. This schema contains three tables that

have many-to-many relationships between them. A product uses

many parts, and a supplier sells many parts. If we apply prior ap-

proaches and assume that either Products or Suppliers is the root

445

mailto:mserafini@qf.org.qa
mailto:rytaft@mit.edu
mailto:aelmore@cs.uchicago.edu
mailto:pavlo@cs.cmu.edu
mailto:aaboulnaga@qf.org.qa
mailto:stonebraker@csail.mit.edu

PartUsage PartSales

PartsProducts Suppliers

prodId

partId

partId

suppId

Figure 1: Products-Parts-Suppliers database schema. Arrows represent
child-parent foreign key relationships.

of a tree, we get an inferior data placement. If we assume Products

is the root, then we will colocate Parts and Suppliers tuples with

their corresponding Products tuples. But this is also bad because

Parts are shared across multiple Products, and Suppliers may

supply many Parts. Hence, there is no good partitioning scheme

that can be identified by solely looking at the database schema, and

a more general approach is required for such “bird’s nest” schemas.

There is also previous work on off-line database partitioning for

general (i.e., non-tree) schemas with the goal of minimizing dis-

tributed transactions. Schism is a prominent representative of this

line of work [5]. The basic idea is to model the database as a graph

where each vertex represents a tuple, and an edge connects two ver-

tices if their tuples are accessed together in a transaction. An edge’s

weight corresponds to the number of transactions accessing the two

tuples together. Partitions are defined using a MinCut algorithm to

split the graph in a way that minimizes the weight on inter-partition

edges (such edges represent distributed transactions). Schism is an

off-line approach, which means that it needs to be re-run each time

a reconfiguration is required. As we will explain later, the dual

goals of balancing load and minimizing distributed transactions are

difficult to express in a MinCut problem formulation. Furthermore,

Schism does not take into account the current database configura-

tion, and thus it cannot minimize data movement.

To overcome all of the above limitations, we present Clay, an

elasticity algorithm that makes no assumptions about the schema,

and is able to simultaneously balance load and minimize distributed

transactions. Unlike existing work on on-line reconfiguration, which

migrates tuples in static blocks, Clay uses dynamic blocks, called

clumps, that are created on-the-fly by monitoring the workload when

a reconfiguration is required. The formation of a clump starts from

a hot tuple that the DBMS wants to migrate away from an over-

loaded partition. After identifying such a hot tuple, Clay enlarges

the clump around that tuple by adding its frequently co-accessed

tuples. This avoids generating a large number of distributed trans-

actions when moving the clump. Another advantage of Clay is that

it is incremental, thereby minimizing the cost of data migration. In

our experiments, Clay outperforms another on-line approach based

on the Metis graph partitioning algorithm [16] by 1.7–15× in terms

of throughput and reduces latency by 41–99%. Overall, the perfor-

mance of Clay depends on how skewed the workload is: the higher

the skew, the better the gain to be expected by using Clay.

2. OVERVIEW
We first illustrate the main idea of our clump migration technique

using the example of the Products-Parts-Suppliers database from

Figure 1. For simplicity, we examine an instance running on three

servers, each with one partition. Assume that partition P3 becomes

overloaded because it hosts too many hot tuples. When overload is

detected, Clay monitors all transactions executed in the system for

a few seconds. Based on this sample, it builds a heat graph like

the one depicted in Figure 2, where vertices are tuples and edges

represent co-accesses among tuples. The heat graph includes only

6	

1	

4	

Products	

Parts	

Suppliers	

Cold	 Hot	

P1	

P3	

Clump		

To	par..on	P2	

2	

3	
5	

7	

8	Co-access	

P2	

Warm	

Figure 2: Heat graph example for a Products-Parts-Suppliers database in
partitions P1, P2, and P3. For simplicity, we only consider three degrees
of hotness. P3 is initially overloaded. Clay creates a clump and moves it to
P2. Vertex IDs indicate the order that Clay adds them to the clump.

the tuples whose activity has been observed during the monitoring

interval. Some tuples and edges may be hotter than others. This is

modeled using vertex and edge weights.

Clay builds clumps based on the heat graph. Initially, it creates a

clump consisting of the hottest tuple of the most overloaded parti-

tion – the Suppliers tuple corresponding to vertex #1 in Figure 2. It

then evaluates the effect of moving the clump to another partition.

To minimize distributed transactions, Clay looks for the partition

whose tuples are most frequently accessed with the tuples in the

clump – partition P2 in our example. The move (only vertex #1

at this point) generates too many distributed transactions because

there is a large number of edges between partitions P2 and P3. As

a result, P2 would become overloaded, and P3 would have no ben-

efit from the move due to an increased number of distributed trans-

actions. Therefore, Clay extends the clump with the vertex that is

most frequently co-accessed with the clump, which is vertex #2 in

the example. The process repeats, and the clump is extended with

vertices #3–8. Note that vertices #4 and #6–8 are not co-accessed

with the initial tuple, but are still added to the clump due to the tran-

sitivity of the co-access relation. Note also that vertices #5–8 reside

on a different partition from the initial tuple. Clay ignores the cur-

rent partitioning when building a clump, focusing exclusively on

the co-access patterns and adding affine tuples from any partition.

The process continues until Clay finds a clump that can be moved to

a partition without overloading it. If the clump cannot be extended

anymore or it reaches a maximum size, Clay scales out the system

by adding a new partition and restarts the clump-finding process.

To build the heat graph, it is necessary to collect detailed in-

formation about co-accesses among tuples in the same transaction.

Clay performs this on-line monitoring efficiently and only for a

short interval of time (∼20 seconds). Although the heat graph can

become large, with up to billions of vertices and edges in our ex-

periments, it is still small enough to fit in main memory; our recon-

figuration algorithm always used less than 4 GB.

3. RELATED WORK
A significant amount of research exists on partitioning strategies

for analytic workloads (OLAP), typically balancing locality with

declustering data to maximize parallelism [20, 33]. Some of that

work explicitly considers on-line partitioning algorithms for analyt-

ics [14] or large graphs [32]. We limit our discussion to partition-

446

ing of OLTP databases, since the goals and techniques are different

from partitioning for OLAP applications. Most notably, these ap-

proaches do not combine scaling to tuple-level granularity, mixing

load-balancing with minimizing cross partition transactions, and

building incremental solutions to update the partitioning.

As discussed earlier, Schism [5] is an off-line algorithm that an-

alyzes a transaction log and has no performance monitoring or live

reconfiguration components. It builds an access graph similar to

our heat graph and uses Metis [16] to find a partitioning that min-

imizes the edge cuts. But since Metis cannot support large graphs,

the DBA must pre-process the traces by sampling transactions and

tuples, filtering by access frequency, and aggregating tuples that are

always accessed together in a single vertex. Since keeping an ex-

plicit mapping of every tuple to a partition would result in a huge

routing table, Schism creates a decision tree that simplifies the in-

dividual mapping of tuples into a set of range partitions. Finally, in

the final validation step, Schism compares different solutions ob-

tained in the previous steps and selects the one having the lowest

rate of distributed transactions. Clay’s clump migration heuristic

is incremental, so it minimizes data migration, and it outperforms

Metis when applied to the heat graph. In addition, Clay’s two-tiered

routing creates small sets of hot tuples that minimize the size of the

routing tables, so it does not require Schism’s extra steps.

Sword [25] is another off-line partitioning tool that models the

database as a hypergraph and uses an incremental heuristic to ap-

proximate constrained n-way graph partitioning. It uses a one-

tier routing scheme that divides the database into coarse-grained

chunks. Sword performs incremental partitioning adjustments by

periodically evaluating the effect of swapping pairs of chunks. Our

experiments show that Clay outperforms state-of-the-art algorithms

that compute constrained n-way graph partitioning from scratch.

Furthermore, Clay adopts a two-tiered approach that supports fine-

grained mapping for single tuples.

Like Schism and Sword, JECB [30] provides a partitioning strat-

egy to handle complex schemas, but the focus is on scalable par-

titioning for large clusters. JECB examines a workload, database

schema, and source code to derive a new partitioning plan using a

divide-and-conquer strategy. The work does not explicitly consider

hot and cold partitions (or tuples) that arise from workload skew.

PLP is a technique to address partitioning in a single-server,

shared-memory system to minimize bottlenecks that arise from con-

tention [22]. The approach recursively splits a tree amongst dedi-

cated executors. PLP focuses on workload skew, and does not ex-

plicitly consider co-accesses between tuples or scaling out across

multiple machines. ATraPos improves on PLP by minimizing ac-

cesses to centralized data structures [24]. It considers a certain

number of sub-partitions (similar to algorithms using static blocks)

and assigns them to processor sockets in a way that balances load

and minimizes the inter-process synchronization overhead.

None of the aforementioned papers discuss elasticity (i.e., adding

and removing nodes), but there are several systems that enable

elastic scaling through limiting the scope of transactions. Mega-

store [2] uses entity groups to identify a set of tuples that are se-

mantically related, and limit multi-object transactions to within the

group. Others have presented a technique to identify entity groups

given a schema and workload trace [17]. This approach is similar

to Clay in that it greedily builds sets of related items, but it focuses

on breaking a schema into groups, and load-balancing and tuple-to-

partition mapping are not factors in the grouping. Similarly, Hor-

ticulture [23] identifies the ideal attributes to partition each table

but does not address related tuple placement. Beyond small entity

groups, ElasTras [6], NuoDB [21], and Microsoft’s cloud-based

SQL Server [3] achieve elastic scaling on complex structures by

limiting transactions to a single partition. Although ElasTras does

support elastic scaling, the system does not specify how to split

and merge partitions to balance workload skew and tuple affinity.

Many key-value stores support intelligent data placement for load-

balancing and elastic scaling [31, 11, 9], but provide weaker trans-

action guarantees than a relational DBMS.

Accordion [26] provides coarse-grained elastic partitioning: the

database is pre-partitioned into a relatively small number of data

chunks (or virtual partitions), each potentially comprising a large

number of tuples. The limitation on the number of chunks is given

by Accordion’s Mixed Integer Linear Programming (MILP) solver

to find an optimal plan. The problem with a coarse-grained ap-

proach is that it cannot deal with skewed workloads where multiple

hot tuples may be concentrated in one data chunk [28]. Accordion

learns the shape of the capacity function for each configuration.

With few chunks there are only relatively few configurations, but if

we consider each tuple as a potential chunk, then it becomes impos-

sible to build an accurate capacity model for every configuration.

Coarse-grained approaches have problems with skewed work-

loads where multiple hot tuples can end up in the same chunk. E-

Store [28] supports tree-schemas by using a two-tiered approach for

load-balancing. It uses fine-grained partitioning for a small number

of hot tuples, and a coarse-grained partitioning for the rest of the

database. Targeting hot tuples in this manner allows the system to

identify hot spots, but it has limitations. Consider the case where

two hot tuples are frequently accessed together in a transaction. E-

Store ignores such co-accesses, so it can independently place hot

tuples on different servers, thereby generating a large number of

distributed transactions. To avoid this problem, E-Store must as-

sume that the database schema is tree-structured and every transac-

tion accesses only the tree of one root tuple. Hence, a root tuple and

its descendants are moved as a unit. Lastly, E-store fails to address

co-accesses to hot dependent tuples.

Online workload monitoring has been used to deal with hot keys

also in stream processing systems [18, 19] and in general sharding

systems like Slicer [1]. However, these systems have no notion of

transactions or co-accesses.

4. PROBLEM STATEMENT
We now define the data placement problem that Clay seeks to

solve. A database consists of a set of tables 〈T1 . . . Tt〉. Each table

Ti has one or more partitioning attributes 〈Ai
1, . . . , A

i
h〉, which

are a subset of the total set of attributes of Ti. Tuples are hori-

zontally partitioned across a set of servers s1, . . . , sj . All tuples

of table Ti with the same values of their partitioning attributes

〈Ai
1 = x1, . . . , A

i
h = xh〉 are placed on the same server and are

modeled as a vertex. The database sample is represented as a set

of vertices V = {v1, . . . , vn}, where each vertex v has a weight

w(v) denoting how frequently the vertex is accessed. Co-accesses

between two vertices are modeled as an edge, whose weight de-

notes the frequency of the co-accesses. We call the resulting graph

G(V,E) the heat graph having vertices in V and edges in E.

Data placement is driven by a partitioning plan P : V → Π
that maps each vertex to a partition in Π based on the value of its

partitioning attributes. A single partition can correspond to a server,

or multiple partitions can be statically mapped onto a single server.

4.1 Incremental Data Placement Problem
Clay solves an incremental data placement problem that can be

formulated as follows. The system starts from an initial plan P .

Let LP (p) be the load of partition p in the plan P , let ǫ be the

percentage of load imbalance that we allow in the system, and let

θ be the average load across all partitions in the plan P multiplied

447

by 1 + ǫ. Let P be the current partitioning plan, P ′ be the next

partitioning plan identified by Clay, and ∆(P, P ′) be the number

of vertices mapped to a different partition in P and P ′. Given this,

the system seeks to minimize the following objective function:

minimize |P ′|,∆(P, P ′) (1)

s.t. ∀p ∈ Π : LP ′(p) < θ

We specify the two objectives in order of priority. First, we min-

imize the number of partitions in P ′. Second, we minimize the

amount of data movement among the solutions with the same num-

ber of partitions. In either case, we limit the load imbalance to be

at most ǫ. We define w as the weight of a vertex or edge, E as

the set of edges in the heat graph, and k > 0 as a constant that

indicates the cost of multi-partition tuple accesses, which require

additional coordination. Given this, the load of a partition p ∈ Π
in a partitioning plan P is expressed as follows:

LP (p) =
∑

v∈V
P (v)=p

w(v) +
∑

v∈V
u∈V

P (v)=p

〈v,u〉∈E

P (u) 6=p

w(〈v, u〉) · k (2)

The parameter k indicates how much to prioritize solutions that

minimize distributed transactions over ones that balance tuple ac-

cesses. Increasing k gives greater weight to the number of dis-

tributed transactions in the determination of the load of a partition.

4.2 Comparison with Graph Partitioning
We now revisit the issue of comparing Clay with graph partition-

ing techniques, and in particular to the common variant solved by

Metis [16] in Schism [5]. The incremental data placement prob-

lem is different from constrained n-way graph partitioning on the

heat graph, where n is the number of database partitions. The first

distinction is incrementality, since a graph partitioner ignores the

previous plan P and produces a new plan P ′ from scratch. By com-

puting a new P ′, the DBMS may have to shuffle data to transition

from P to P ′, which will degrade its performance. We contend,

however, that the difference is not limited to incrementality.

Graph partitioning produces a plan P ′ that minimizes the num-

ber of edges across partitions under the constraint of a maximum

load imbalance among partitions. The load of a partition is ex-

pressed as the sum of the weights of the vertices in the partition:

L̂P (p) =
∑

v∈V
P (v)=p

w(v) (3)

To be more precise, consider the Metis graph partitioner that

solves the following problem:

minimize |{〈v, u〉 ∈ E : P ′(v) 6= P ′(u)}| (4)

s.t. ∀p, q ∈ Π : L̂P ′(p)/L̂P ′(q) < 1 + η

where η is an imbalance constraint provided by the user.

The load balancing constraint is over a load function, L̂P , which

does not take into account the cost of distributed transactions. In

graph terms, the function does not take into account the load caused

by cross-partition edges. This is in contrast with the definitions of

Equations 1 and 2, where the load threshold considers at the same

time both local and remote tuple accesses and their respective cost.

The formulation of Equations 1 and 2 has two advantages over

Equations 3 and 4. The first is that the former constrains the num-

ber of cross-partition edges per partition, whereas Equation 4 min-

imizes the total number of cross-partition edges. Therefore, Equa-

tion 4 could create a “star” partitioning setting where all cross-

partition edges, and thus all distributed transactions, are incident

on a single server, causing that server to be highly overloaded.

Shared-nothing	Distributed	

OLTP	System	(e.g.,	H-Store)

Transaction	

Monitor	and	

High-Level	

System	Monitor

Clump	

Migration

Current	partition	plan

Transactional	access	trace

Reconfiguration	Engine	

(e.g.,	Squall)

Reconfiguration	plan
Intercept	SQL	query	

processing

Figure 3: The Clay framework.

The second advantage of our formulation is that it combines the

two conflicting goals of reaching balanced tuple accesses and min-

imizing distributed transactions using a single load function. Con-

sidering the two goals as separate makes it difficult to find a good

level of η, as our experiments show. In fact, if the threshold is

too low, Metis creates a balanced load in terms of single partition

transactions, but it also causes many distributed transactions. If the

threshold is too large, Metis causes fewer distributed transactions,

but then the load is not necessarily balanced.

One could consider using LP instead of L̂P as the expression of

load in Equation 4. Unfortunately, this is not possible since vertex

weights need to be provided as an input to the graph partitioner,

whereas the number of cross-partition edges depends on the out-

come of the partitioning itself.

5. SYSTEM ARCHITECTURE
Clay runs on top of a distributed OLTP DBMS and a reconfig-

uration engine that can dynamically change the data layout of the

database (see Figure 3). The monitoring component of Clay is acti-

vated whenever performance objectives are not met (e.g., when the

latency of the system does not meet an SLA). If these conditions

occur, Clay starts a transaction monitor that collects detailed work-

load monitoring information (Section 6). This information is sent

to a centralized reconfiguration controller that builds a heat graph.

The controller then runs our migration algorithm that builds clumps

on the fly and determines how to migrate them (Section 7).

Although Clay’s mechanisms are generic, the implementation

that we use in our evaluation is based on the H-Store system [12,

15]. H-Store is a distributed, in-memory DBMS that is optimized

for OLTP workloads and assumes that most transactions are short-

lived and datasets are easily partitioned. The original H-Store de-

sign supports a static configuration where the set of partitions and

hosts and the mapping between tuples and partitions are all fixed.

The E-Store [28] system relaxes some of these restrictions by al-

lowing for a dynamic number of partitions and nodes. E-Store also

changes how tuples are mapped to partitions by using a two-tiered

partitioning scheme that uses fine-grained partitioning (e.g., range

partitioning) for a set of “hot” tuples and then a simple scheme

(e.g., range partitioning of large chunks or hash partitioning) for

large blocks of “cold” tuples. Clay uses this same two-tier partition-

ing scheme in H-Store. It also uses Squall for reconfiguration [8],

although its techniques are agnostic to it.

6. TRANSACTION MONITORING
The data placement problem of Section 4 models a database as a

weighted graph. The monitoring component collects the necessary

information to build the graph: it counts the number of accesses to

tuples (vertices) and the co-accesses (edges) among tuples.

448

Monitoring tracks tuple accesses by hooking onto the transaction

routing module. When processing a transaction, H-Store breaks

SQL statements into smaller fragments that execute low-level op-

erations. It then routes these fragments to one or more partitions

based on the values of the partitioning attributes of the tuples that

are accessed by the fragment.

Clay performs monitoring by adding hooks in the DBMS’s query

processing components that extract the values of the partitioning

attributes used to route the fragments. These values correspond to

specific vertices of the graph, as discussed in Section 4. The mon-

itoring component is executed by each server and writes tuple ac-

cesses onto a monitoring file using the format 〈tid, T, x1, . . . , xh〉,
where tid is a unique id associated with the transactions perform-

ing the access, T is the table containing the accessed tuple, h is the

number of partitioning attributes of table T , and xi is the value of

the ith partitioning attribute in the accessed tuple. When a transac-

tion is completed, monitoring adds an entry 〈END, tid〉.
Query-level monitoring captures more detailed information than

related approaches. It is able to determine not only which tuples are

accessed, but also which tuples are accessed together by the same

transaction. E-Store restricted monitoring to root tuples because of

the high cost of using low-level operations to track access patterns

for single tuples [28]. Our evaluation shows that Clay’s monitoring

is more accurate and has low overhead.

Clay disables monitoring during normal transaction execution

and only turns it on when some application-specific objectives are

violated (e.g., if the 99th percentile latency exceeds a pre-defined

target). After being turned on, monitoring remains active for a short

time. Our experiments established that 20 seconds was sufficient to

detect frequently-accessed hot tuples.

Once a server terminates monitoring, it sends the collected data

to a centralized controller that builds the heat graph (see Figure 2)

and computes the new plan. For every access to a tuple/vertex v
found in the monitoring data, the controller increments v’s weight

by one divided by the length of the monitoring interval for the

server, to reflect the rate of transaction accesses. Vertices accessed

by the same transactions are connected by an edge whose weight is

computed similarly to a vertex weight.

7. CLUMP MIGRATION
The clump migration algorithm is the central component of Clay.

It takes as input the current partitioning plan P , which maps tu-

ples to partitions, and the heat graph G produced by the monitoring

component. Its output is a new partitioning plan (see Section 4).

We now describe the algorithm more in detail.

7.1 Dealing with Overloaded Partitions
The clump migration algorithm of Clay starts by identifying the

set of “overloaded” partitions that have a load higher than a thresh-

old θ. The load per partition is defined by the formula in Equation 2

(we used a value of k = 50 in all our experiments since we found

that distributed transactions impact performance much more than

local tuple accesses). For each overloaded partition Po, the migra-

tion algorithm dynamically defines and migrates clumps until the

load of Po is below the θ threshold (see Algorithm 1). A clump

created to offload a partition Po will contain some tuples of Po but

it can also contain tuples from other partitions. A move is a pair

consisting of a clump and a destination partition.

Initializing a clump. The algorithm starts with an empty clump

M . It then sets M to be the hottest vertex h in the hot tuples list

H(Po), which contains the most frequently accessed vertices for

Algorithm 1: Migration algorithm to offload partition Po

look-ahead← A;
while L(Po) > θ do

if M = ∅ then
// initialize the clump
h← next hot tuple in H(Po);
M ← {h};
d← initial-partition(M);

else if some vertex in M has neighbors then
// expand the clump
M ←M ∪ most-co-accessed-neighbor(M,G);
d← update-dest(M,d);

else
// cannot expand the clump anymore
if C 6= ∅ then

move C.M to C.d;
M ← ∅;
look-ahead← A;

else
add a new server and restart the algorithm;

// examine the new clump
if feasible(M,d) then

C.M ←M ;
C.d← d;

else if C 6= ∅ then
look-ahead← look-ahead −1;

if look-ahead = 0 then
move C.M to C.d;
M ← ∅;
look-ahead← A;

Algorithm 2: Finding the best destination for M

function update-dest(M,d)

if ¬ feasible(M,d) then

a← partition most frequently accessed with M ;
if a 6= d∧ feasible(M,a) then

return a;

l← least loaded partition;

if
(

l 6= d
)

∧
(

∆r(M,a) < ∆r(M, l)
)

∧ feasible(M, l)

then
return l

return d;

each partition (i.e., those having the highest weight, in descending

order of access frequency).

The algorithm then picks the destination partition that minimizes

the overall load of the system. The function initial-partition se-

lects the destination partition d having the lowest receiver delta

∆r(M,d), where ∆r(M,d) is defined as the load of d after re-

ceiving M minus the load of d before receiving M . Given the way

the load function is defined (see Equation 2), the partition with the

lowest receiver delta is the one whose tuples are most frequently

co-accessed with the tuples in M , so moving M to that partition

minimizes the number of distributed transactions. The initial selec-

tion of d prioritizes partitions that do not become overloaded after

the move, if available. Among partitions with the same receiver

delta, the heuristic selects the one with the lowest overall load. In

systems like H-Store that run multiple partitions on the same physi-

cal server, the cost function assigns a lower cost to transactions that

access partitions in the same server than to distributed transactions.

Expanding a clump. If M is not empty, it is extended with the

neighboring tuple of M that is most frequently co-accessed with

a tuple in M . This is found by iterating over all the neighbors of

449

vertices of M in G and selecting the one with the highest incoming

edge weight. A clump can be extended with a tuple t located in a

partition p different from the overloaded partition Po. In this case,

it is important to verify that Po does not become overloaded when

t is transferred to another partition. The algorithm guarantees this

by checking that the sender delta ∆s(M,p) (i.e., the difference

between the load of p after M is moved to another partition and

before the move) is non-positive.

The best destination partition of a clump can change after we add

new tuples to the clump. Verifying which other partitions can take

a newly extended clump, however, entails computing the receiver

delta for many potential destination partitions, which is expensive.

Therefore, the update-dest function shown in Algorithm 2 does not

consider changing the current destination partition for the clump

if the move of M to d is feasible, which means that either d does

not become overloaded after the move, or the receiver delta of d
is non-positive. In the latter case, d actually gains from receiving

M , so the move is allowed even if d is overloaded. Formally, the

feasibility predicate is defined as follows:

feasible(M,d) =
(

L(d) + ∆r(M,d) < θ
)

∨
(

∆r(M,d) ≤ 0
)

If the current move is not feasible, update-dest tries to update

the destination by first considering the partition having the hottest

edges connecting to the clump, and then the least loaded partition.

Note that sometimes a clump cannot be expanded anymore be-

cause there are no more neighbors or because its size has reached

an upper limit. We will discuss this case shortly.

Moving a clump. After expanding a clump, the algorithm checks

if the move to d is feasible. Clay calls the best feasible move it

has found so far the candidate move C. A candidate move is not

immediately reflected on the output plan because it may still be sub-

optimal. For example, it could still generate many multi-partition

transactions. Clay keeps expanding C for a certain number of steps

in search for a (local) optimum, updating C every time it finds a

better move. If no better move than C is found after A steps, Clay

concludes that C is a local optimum and it modifies the output plan

according to C. Larger values of A increase the likelihood of find-

ing a better optimum, but they also increase the running time of the

algorithm. We found A = 5 to be a good setting in our evaluation.

Candidate moves are also applied when a clump cannot be ex-

panded anymore due to lack of neighbors. In this case, if a candi-

date move exists, we modify the plan according to it. If not, we add

a new server and we restart the search for an optimal clump from

the latest hot tuple that has not yet been moved, this time consider-

ing the new server as an additional destination option.

Example. Consider the example shown in Figure 2. The partition

that we want to offload is P3. Initially, the clump consists of the

hottest tuple in P3, which is the supplier tuple #1. The algorithm

selects P2 as the destination partition, since tuple #1 is frequently

accessed with the part tuple #5. However, moving tuple #1 to P2

would create new distributed transactions associated with the new

cross-partition edges: two hot edges (from #1 to #2 and #3) and a

cold edge. Assuming that these additional distributed transactions

would make P2 overloaded, then this move is not feasible.

Since we do not have a feasible move yet, the algorithm expands

the clump with the vertices that are most frequently co-accessed

with tuple #1. The parts tuples #2 and #3 have hot edges connect-

ing them to tuple #1, so they are added to the clump, but assume

that this still does not make the move to P2 feasible due to the hot

cross-edge connecting tuples #2 and #3 to the product tuple #4.

Finally, tuple #4 is added (note that it is not directly accessed to-

gether with the original hot tuple #1) and let us assume that the

ParEEon	p	

u v

M	

ParEEon	p	

u v

M	

ParEEon	d	

ParEEon	p	

u

vM	

ParEEon	o	

ParEEon	p	

vM	

ParEEon	d	

u

ParEEon	o	

ParEEon	p	

v u

M	

ParEEon	d	 ParEEon	p	

v u

M	

ParEEon	d	

BEFORE	THE	MOVE	 AFTER	THE	MOVE	

Case	1	

Case	2	

Case	3	

Figure 4: Types of moves when computing sender/receiver deltas.

move to P2 is now feasible. The algorithm then registers the pair

〈{#1, #2, #3, #4},P2〉 as a candidate move. The move relieves P3

of its hotspot, but it still creates a few new distributed transactions

for P3 due to the warm edge to the part tuple #8 in partition P1.

The algorithm keeps expanding the clump to find a better move.

After adding a few tuples in P2, the clump eventually incorporates

the part tuple #8, as illustrated in Figure 2. This clump has a lower

receiver delta for P2 than the previous candidate since it eliminates

the warm edge to tuple #8. Therefore, the new candidate move

is set to transfer the new clump to the destination partition P2. If

after doing A further expansions no better clump can be found, the

candidate move is enacted and the clump is moved to P2.

7.2 Estimating Deltas Efficiently
The clump migration algorithm repeatedly computes the sender

and receiver deltas of the moves it evaluates. The simplest way

to compute these deltas it is to compare the load of the sender or

receiver partition before and after the move. Computing this is ex-

pensive since it requires examining all of a partition’s vertices and

incident edges, both of which can be in the millions. We now dis-

cuss a more efficient, incremental way to calculate deltas that only

has to iterate through the vertices of the clump and their edges.

Let us start from the sender delta ∆s(M,p), where M is the

clump to be moved and p is the sender partition. Moving M can

result in additional distributed transactions for p. This occurs if we

have two neighboring vertices u and v such that v ∈ M and u 6∈ M
(see Figure 4, Case 1). After the move, the edge 〈v, u〉 results in

new distributed transactions for p. The move can also eliminate

distributed transactions for p. This occurs when a neighbor u of v
is located in a different partition o (see Figure 4, Case 2). In this

case, the sender saves the cost of some distributed transactions it

was executing before the reconfiguration. Note that the same holds

if o is equal to the destination partition d or if u is in M .

We can summarize these aforementioned cases in the following

expression for the sender delta:

∆s(M, p) = −
∑

v∈M
P (v)=p

w(v)+
∑

v∈M
〈v,u〉∈E

u 6∈M
P (v)=p

P (u)=p

w(〈v, u〉)·k−
∑

v∈M
〈v,u〉∈E

P (v)=p

P (u) 6=p

w(〈v, u〉)·k

where P is the current plan. P (v) represents the partition that tuple

v is assigned to by the current plan that is being modified. The first

450

term represents the cost of the tuple accesses that are transferred

among partitions, without considering distributed transactions. The

other two terms represent Cases 1 and 2 of Figure 4, respectively.

This expression of ∆s(M,p) can be computed by iterating only

over the elements of M and its edges.

A similar approach can be used for the receiver delta ∆r(M,d),
where d is the receiving partition. Partition d incurs additional dis-

tributed transactions when a tuple v in M is co-accessed with a

tuple u that is not in M or d (see Figure 4, Case 2). Note that

partition o and p can be the same. The receiver delta incurs fewer

distributed transactions when M contains a tuple v that was remote

to d and is co-accessed with a tuple u in d (see Figure 4, Case 3).

Considering the previous cases, we can express the receiver delta

function ∆r for a clump M and receiving partition d as follows:

∆r(M,d) =
∑

v∈M
P (v) 6=d

w(v) +
∑

v∈M
〈v,u〉∈E

u 6∈M
P (v) 6=d

P (u) 6=d

w(〈v, u〉) · k−
∑

v∈M
〈v,u〉∈E

P (v) 6=d

P (u)=d

w(〈v, u〉) · k

where the first term corresponds to the cost of tuple accesses with-

out considering distributed transactions, and the other two terms

correspond to Cases 2 and 3 of Figure 4, respectively.

7.3 Scaling In
The methods described for Clay thus far are for scaling out the

database when the workload demands increase. An elastic DBMS,

however, must also consolidate the database to fewer partitions

when the workload demands decrease. Clay scales in by first check-

ing if there are underloaded partitions having a load lower than a

certain threshold. This threshold can be computed as the average

load of all partitions multiplied by 1 − ǫ, where ǫ is the imbalance

factor introduced in Section 4. For each underloaded partition p, it

tries to find a destination partition d that can take all of the tuples

of p. If d reduces its load after receiving all of the tuples of p, or if

d does not become overloaded, then the data of p is migrated into

d and p is removed from the partitioning plan. Clay minimizes the

number of active partitions by scanning underloaded partitions in

descending id order and destination partitions in ascending id order.

7.4 Routing Table Compaction
Clay maintains two data structures for its internal state. The first

is the heat graph that is discarded after each reconfiguration. The

second is the DBMS’s routing table, which encodes the partitioning

plan and is replicated on each server. We now discuss how to keep

this table from growing too large.

The routing table consists of a set of ranges for each table. Ini-

tially, there are a few large, contiguous ranges. When clumps are

moved, however, contiguous ranges may be broken into subranges

and hot tuples may be represented as small ranges. Over time, the

routing table can get fragmented and large. If the routing table is

too large, then the DBMS will incur substantial overhead when de-

termining where to direct transactions and queries.

To solve this problem, Clay maintains a separate index that tracks

which clumps have been moved from their initial location. Each

clump is indexed by the hot tuple that started the clump. Before ex-

ecuting its clump migration algorithm, Clay computes a new rout-

ing table where the tuples within any clump whose starting tuple is

no longer hot are moved back to their original location. Next, Clay

invokes the clump migration algorithm with this new routing table

as its input and migrates any data as needed based on the new rout-

ing table. The extra step guarantees that the size of the routing table

only depends on the size of the clumps of currently hot tuples.

0

2000

4000

6000

Initial Monitoring E−Store Clay Optimal

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

)

Figure 5: TPC-C Throughput – The measured throughput for H-Store
using different partitioning algorithms before monitoring is started, during
monitoring, and after the reconfiguration.

8. EVALUATION
We now evaluate the efficacy of Clay’s clump migration mech-

anism using three benchmarks. The first is TPC-C, which is the

most well-known tree-based OLTP benchmark. The second work-

load is Products-Parts-Suppliers (PPS), a “bird’s nest” benchmark

modeled after the database shown in Figure 1. The third benchmark

is inspired by Twitter, the popular micro-blogging website.

We begin with experiments that use small database sizes to speed

up loading time. We then explore larger databases to show that the

databases size is not a key factor in the performance of Clay.

8.1 Environment
All of our experiments were conducted on an H-Store database

deployed on a 10-node cluster running Ubuntu 12.04 (64-bit Linux

3.2.0), connected by a 1 Gb switch. Each machine had four 8-core

Intel Xeon E7-4830 processors running at 2.13 GHz with 256 GB

of DRAM.

In addition to Clay, we implemented two other reconfiguration

algorithms in the H-Store environment. For all of the experiments,

we provide the same workload monitoring information to all the

algorithms to ensure a fair comparison. Metis uses its graph par-

titioning tool [16] to partition the same heat graph used by Clay.

In order to obtain the correct number of partitions with small heat

graphs, like the ones of TPC-C, we use multilevel recursive bi-

sectioning. E-Store employs the greedy-extended reconfiguration

heuristic proposed in [28]. It uses the monitoring traces only to

calculate access frequencies and does not consider co-accesses.

We have selected the configurations of E-Store and Clay that re-

sult in the most balanced load, according to their different definition

of load. For Metis, we report results under different settings for its

imbalance threshold. The DBMS’s migration controller is started

on demand and runs on a separate node to avoid interference with

other processes. We start all experiments from an initial configu-

ration where data is spread uniformly, regardless of the hotness of

the partitions.

8.2 TPC­C
The goal of this first experiment is to validate that Clay can

generate the same partitioning scheme as E-Store without using

the database’s schema. For this, we use the TPC-C benchmark

that models a warehouse-centric order processing application [29].

TPC-C’s database has a well-defined tree-structure where tables

are partitioned by their parent warehouse. We start with an ini-

tial placement that co-locates tuples of the same warehouse and

uniformly distributes warehouses among the partitions.

We use a database with 100 warehouses (∼10 GB) that are split

across three servers in 18 partitions. In TPC-C, the NewOrder

and Payment transactions make up about 85% of the workload

and access multiple warehouses in 10% and 15% of the cases, re-

spectively. E-Store performs best in scenarios with high skew, so

451

0

2500

5000

7500

10000

In
iti
al

M
on

ito
rin

g

M
et

is
 0

.1

M
et

is
 0

.5

M
et

is
 1

M
et

is
 1

.5

M
et

is
 2

M
et

is
 1

0

E−S
to

re
C
la
y

O
pt

im
al

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

)

(a) Throughput

0

1000

2000

3000

In
iti
al

M
on

ito
rin

g

M
et

is
 0

.1

M
et

is
 0

.5

M
et

is
 1

M
et

is
 1

.5

M
et

is
 2

M
et

is
 1

0

E−S
to

re
C
la
y

O
pt

im
al

L
a

te
n

c
y

 (
m

s
)

(b) Latency

Figure 6: TPC-C/S Runtime Performance – The measured throughput and latency for H-Store using different partitioning algorithms before monitoring is
started, during monitoring, and after the reconfiguration.

we modified the TPC-C workload generator such that 80% of the

transactions access only three warehouses concentrated in the same

partition. We use the default behavior of TPC-C, where every group

of warehouses is equally likely to be accessed together. In this set-

ting, it is sufficient for the reconfiguration algorithm to move all

trees together and to relieve hotspots. Since no pair of warehouses

is co-accessed more often than others, the placement of warehouses

does not impact the rate of distributed transactions as long as all

partitions receive approximately the same number of warehouses.

The performance of the reconfiguration algorithms is shown in

Figure 5. As expected, Clay has similar performance to E-Store.

The two algorithms increase throughput by 137% and 121% and

reduce latency by 59% and 55%, respectively. Clay performs well

because it moves warehouses in a block, even if it only relies on

the heat graph to identify the tree structures related to warehouses.

Both E-Store and Clay move the same two warehouses from the

overloaded partition to another partition. We observed that Clay’s

look-ahead mechanism allows it to accurately identify trees. Tu-

ples in the WAREHOUSE, STOCK, and DISTRICT tables are

accessed more frequently than others, so Clay finds feasible mi-

grations that offload overloaded servers by moving the tuples from

these tables. Clay detects that moving other tuples of the same

tree (i.e., related to the same warehouse) further reduces distributed

transactions. The rate of distributed transactions does not change

much after reconfiguration for both heuristics. The marginal per-

formance improvement with Clay is because it achieves a slightly

better balance in the amount of distributed transactions per server.

We also devised an optimal configuration that assumes a priori

knowledge of future hotspots and co-accesses among tuples. We

placed an equal number of warehouses on each server and evenly

spread hot warehouses among servers. E-Store and Clay obtain

plans that are very similar to the best-case one. They both spread

hot warehouses correctly but they do not place a perfectly even

number of cold warehouses on each server.

Figure 5 also shows the performance overhead of monitoring.

The overhead is visible but not significant since monitoring runs

only for 20 seconds. For this short period of time, throughput is

reduced by 32% and latency is increased by 42%.

8.3 TPC­C/S
We next test whether Clay is able to find better configurations

than E-Store and Metis by explicitly considering how TPC-C tu-

ples from different warehouses are accessed together. We tweak

the previous setup such that the probability of co-accesses among

warehouses is skewed and each warehouse is only co-accessed with

its “paired” warehouse. We call this version of the benchmark TPC-

C/S. In this scenario, it is important that the migration plan places

pairs of co-accessed warehouses on the same server.

Figure 6 shows the throughput and latency obtained with the re-

configuration algorithms. As in Figure 5, monitoring overhead is

visible but not of great concern due to the short duration. Through-

put is reduced by 33% and latency is increased by 46%. These

results also show that Clay provides excellent performance; by ex-

plicitly tracking co-accesses, it manages to place together the paired

warehouses, resulting in a 3.1× throughput increase and a 68% la-

tency reduction. As in the previous experiment, Clay is able to

detect the presence of a tree structure by looking at co-accesses

among tuples, independent from the database structure. It moves all

tuples related to the same warehouse together in the same clump.

We again created an optimal configuration that assumes knowl-

edge of the hot tuples and their co-accessed tuples ahead of time.

We grouped tuples in the same warehouse together, placed all the

warehouses that are paired in the same partition, and uniformly dis-

tributed hot tuples across different servers. The main difference

between the best-case plan and the one produced by Clay is that,

in the latter, some cold paired warehouses are not placed together.

Clay’s solution is, however, close to the optimal because correctly

placing hot tuples has more significant impact on performance.

For Metis, we consider multiple values of the imbalance thresh-

old parameter (from 10% to 1000%). The results show that if this

threshold is too low, then the solution space is limited and Metis

does not manage to produce a low edge cut. Even if the load is

balanced in terms of accesses to single tuples, there are still a large

number of distributed transactions, which Metis does not regard as

“load” (see Figure 7). This degrades the DBMS’s performance af-

ter reconfiguration. Increasing the threshold reduces edge cuts and

thus causes fewer distributed transactions. If we set the imbalance

to be 100%, then Metis eliminates all distributed transactions by

paring warehouses correctly. But the plans produced in this case

have high imbalance, as shown in Figure 8, and thus the DBMS

never achieves the same performance gains as with Clay. Further-

more, Metis only minimizes the total number of edges cut in the en-

tire graph, and not the maximum number of edges cut per partition.

As such, some servers run a disproportionate fraction of distributed

transactions. The performance of E-Store is worse than Metis. This

is because both try to balance the same load metric of Equation 3,

which only reflects the frequency of tuple accesses and does not

consider the cost of distributed transactions. Unlike E-Store, how-

ever, Metis also minimizes the number of distributed transactions

and thus achieves better performance for some configurations.

Figure 9 reports the complexity of data movement, expressed in

terms of the percentage of the database that needs to be migrated.

As expected, E-Store moves the same two hot warehouses in TPC-

C, since it does not detect the different co-access skew of TPC-C/S.

Clay also moves two hot warehouses, but it places them together

with their paired warehouse. The third hot warehouse is already

452

0

20

40

60

80

M
et

is
 0

.1

M
et

is
 0

.5

M
et

is
 1

M
et

is
 1

.5

M
et

is
 2

M
et

is
 1

0

E−S
to

re
C
la
y

%
 D

is
tr

ib
u

te
d

 T
ra

n
s
a
c
ti

o
n

s

Figure 7: TPC-C/S Distributed Transactions – The percentage of trans-
actions in the workload that access multiple partitions after reconfiguration.

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 1011121314151617
Partitions

%
 o

f
T
ra

n
s
a
c
ti

o
n

s

Metis 1
E−Store
Clay

Figure 8: TPC-C/S Load Distribution – The measured distribution of the
load among partitions for different heuristics. For each partition id, we show
the percentage of transactions having that partition as base partition.

initially located with the paired one. Metis computes a new plan

from scratch and thus transfers almost the whole database.

Figure 10 shows a timeline of the DBMS’s sustained throughput

and latency during data migration using Squall. Reconfiguration

takes 373 seconds, during which the system remains live, albeit

with reduced throughput. This performance impact is due to H-

Store’s single threaded execution engine that can either be migrat-

ing data or executing transactions. This impact is exacerbated when

migration objects are large, such as all data related to a warehouse

in TPC-C. Squall can achieve higher performance at the expense of

a longer time to complete the reconfiguration [8].

8.4 Products­Parts­Suppliers
We implemented a Products-Parts-Suppliers benchmark like the

one in Figure 1 to test the capabilities of the different heuristics.

In our experiments, each product requires 10 parts, which are used

only for that product. Suppliers produce 200 parts each and each

part is produced by two different suppliers. The database has 30

partitions across 5 servers, and its size is 5 GB. We will discuss

in the section on scalability why choosing such a small database is

appropriate. Initially, we uniformly distribute products and suppli-

ers across four servers. Since each part is uniquely associated with

a single product, we colocate parts with their products. One extra

server is left available for the system to scale out and re-balance

whenever required.

The workload consists of the following five transactions, each

corresponding to 20% of the transaction mix: (1) get one part, (2)

get one product, (3) get one supplier, (4) get all parts of a product,

and (5) get some of the parts of a supplier selected according to a

Zipfian distribution. There are six hot suppliers, and the workload

is skewed such that each hot supplier receives 3.33% of all “get one

supplier” and “get some of the parts of a supplier” transactions. In

total, the hot suppliers and their co-accessed tuples receive 20% of

the workload for these two transactions, or 8% of all transactions.

The remaining suppliers are accessed according to a gradual Zip-

fian distribution, where we set the skew parameter to 0.1. The other

three transactions (“get one part”, “get one product”, and “get all

parts of a product”) access all parts and products uniformly.

0

25

50

75

100

M
et

is
 0

.1

M
et

is
 0

.5

M
et

is
 1

M
et

is
 1

.5

M
et

is
 2

M
et

is
 1

0

E−S
to

re
C
la
y

%
 o

f
T
u

p
le

s
 T

ra
n

s
fe

rr
e
d

Orders
Stock
Customer
District
Warehouse

Figure 9: TPC-C/S Data Migration – Amount of data migrated by the
different heuristics.

m
oni t

ori
ng

in
i t
ia

l

gra
ph

part
i t
io

nin
g

m
ig

ra
t i
on

f i
nal

0

3,000

6,000

9,000

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

)

m
oni t

ori
ng

in
i t
ia

l

gra
ph

part
i t
io

nin
g

m
ig

ra
t i
on

f i
nal

0

1,500

3,000

4,500

0 250 500 750
Time (s)

A
v
e
ra

g
e

L
a
te

n
c
y
 (

m
s
)

Figure 10: TPC-C/S Live Migration Timeline – The sustained throughput
and latency of the DBMS over time during a migration.

The results in Figure 11 show the DBMS’s performance obtained

using schemes generated by the reconfiguration algorithms. As in

the previous case, the overhead of monitoring is limited both in

throughput and latency. Clay performs well, improving throughput

by more than 3× and reducing latency by 94%. It identifies hot

suppliers and moves them to a partition on the extra server, along

with their parts and some of their related products.

We again devised an optimal scenario that assumes perfect knowl-

edge of the future workload behavior. We uniformly spread hot

suppliers across servers, and co-located suppliers with their parts

and parts with their products. Clay produces again a similar plan

as the best-case, but it is more fragmented than the optimal one be-

cause the monitoring data misses some co-accesses between cold

tuples. This also results in a slightly larger routing table.

E-Store can also scale the database out to the extra server. But

because there are not well-defined blocks in the database, E-Store

moves each tuple separately regardless of its co-access patterns.

The results in Figure 12 show that it is unable to improve through-

put or latency because it creates more distributed transactions.

The results for Metis are once again interesting. Unlike with

TPC-C, setting a larger imbalance threshold does not result in bet-

ter performance because the heat graph is a sample of the tuples

that are accessed during the monitoring interval. Since transactions

in TPC-C mostly accesses a small set of tuples, the sample is repre-

sentative of the actual workload. Therefore, minimizing the num-

ber of edge cuts in the heat graph reduces the number of distributed

transactions. But with the PPS benchmark, there is a much broader

set of tuples that are accessed, and the heat graph only contains the

hottest ones along with the set of colder tuples that happened to

be accessed during the monitoring interval. This implies that heat

graph accurately models the co-accesses with hot tuples, but not

necessarily co-accesses among cold tuples. Metis does not con-

sider the initial plan, so it freely shuffles tuples in the heat graph if

this does not increase the number of edge cuts. As such, Metis of-

ten separates cold tuples whose co-accesses are not observed, and

this causes a large number of distributed transactions.

453

0

20000

40000

60000

In
iti
al

M
on

ito
rin

g

M
et

is
 0

.1

M
et

is
 1

M
et

is
 1

0

M
et

is
 1

00

M
et

is
 1

00
0

E−S
to

re
C
la
y

O
pt

im
al

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

)

(a) Throughput

0

200

400

600

In
iti
al

M
on

ito
rin

g

M
et

is
 0

.1

M
et

is
 1

M
et

is
 1

0

M
et

is
 1

00

M
et

is
 1

00
0

E−S
to

re
C
la
y

O
pt

im
al

L
a

te
n

c
y

 (
m

s
)

(b) Latency

Figure 11: PPS Runtime Performance – The measured throughput and latency for H-Store using different partitioning algorithms before monitoring is
started, during monitoring, and after the reconfiguration.

0

10

20

30

M
et

is
 0

.1

M
et

is
 1

M
et

is
 1

0

M
et

is
 1

00

M
et

is
 1

00
0

E−S
to

re
C
la
y

%
 D

is
tr

ib
u

te
d

 T
ra

n
s
a
c
ti

o
n

s

Figure 12: PPS Distributed Transactions – The percentage of transac-
tions in the workload that access multiple partitions after reconfiguration.

0

25

50

75

100

M
et

is
 0

.1

M
et

is
 1

M
et

is
 1

0

M
et

is
 1

00

M
et

is
 1

00
0

E−S
to

re
C
la
y

%
 o

f
T
u

p
le

s
 T

ra
n

s
fe

rr
e
d

Products
Suppliers
Parts
total

Figure 13: PPS Data Migrations – Amount of data migrated by the dif-
ferent heuristics.

The problems with Metis are not specific to graph partitioning:

any technique that builds a scheme based on a sampled graph will

overlook a large number of low-frequency edges that are not in-

cluded in the sample, and thus will create a large number of dis-

tributed transactions. Clay does not have this problem since it

moves only hot tuples and tuple clumps that are co-accessed to-

gether. These hot tuples and edges are more accurately reflected

in a sampled graph, like the heat graph, resulting in almost no dis-

tributed transactions. Although E-Store fails to identify co-accesses,

it does construct a new plan incrementally, thereby reducing data

shuffling and limiting the increase in distributed transactions.

The amount of data moved by the heuristics is reported in Fig-

ure 13. As in the case of TPC-C/S, Metis migrates a large number

of tuples (i.e., more than 20% of the database). E-Store only trans-

fers a few hot tuples, and as a result it migrates a tiny fraction of

the database, 0.07%. Clay migrates even less data, 0.003% of the

database, or 1225 tuples, because it has a more accurate load model

and focuses on the tuples that generate the highest number of dis-

tributed transactions. Figure 14 shows that Squall can reconfigure

PPS within a few seconds with limited performance impact.

moni to
rin

g

in
i t i

al

gra
ph
part i

t io
nin

g

mig
ra

t io
n

f in
al

0

25,000

50,000

75,000

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

)

moni to
rin

g

in
i t i

al

gra
ph
part i

t io
nin

g

mig
ra

t io
n

f in
al

0

40

80

120

0 50 100 150 200 250
Time (s)

A
v
e
ra

g
e

L
a
te

n
c
y
 (

m
s
)

Figure 14: PPS Live Migration Timeline – The sustained throughput and
latency of the DBMS during a migration.

moni toring
ini t ia

l

graph

part i t
ioning

migrat ion

f inal

0

5,000

10,000

T
h

ro
u

g
h

p
u

t
(t

x
n

s
/s

)

moni toring
ini t ia

l

graph

part i t
ioning

migrat ion

f inal

0

250

500

750

0 200 400 600
Time (s)

A
v
e
ra

g
e

L
a
te

n
c
y
 (

m
s
)

Figure 15: PPS Scale In Timeline – The sustained throughput and latency
of the DBMS as it coalesces the database to a smaller cluster.

Clay also supports scaling-in as shown in Figure 15, which is

triggered by reducing the clients’ transaction rates by 10×. It re-

tracts to one less server without a major performance impact.

8.5 Twitter
To test Clay’s performance on a real-world non-tree schema,

we used the Twitter benchmark from the OLTP-Bench testbed [7],

which is inspired by the popular micro-blogging website. This

benchmark contains five transactions: (1) get a user’s tweets, (2)

get the names of a user’s followers, (3) insert a tweet, (4) retrieve

a tweet, and (5) get tweets from all users that a given user is fol-

lowing. Transactions (1) and (3) are always local and account for

95% of the workload. The other three transactions account for the

remaining 5% and may or may not be local.

To make the benchmark’s access patterns more realistic, we de-

fined the “follows” relationships between users according to a sub-

set of the real Twitter social graph from August 2009 that contains

51m users and 2b “follows” relationships [4]. This means that any

set of users identified by Clay as highly connected in our Twitter

benchmark represents a cluster of highly connected users in the

real social network. We also limited transactions (2) and (5) to 10

454

Table 1: Scalability of Clay using PPS variants – We reduced the skew
by halving the fraction of requests sent to the hottest tuples (Low skew), in-
creased the size of the database by 10× (10x DB size), doubled the number
of hosts (2× hosts), and considered a workload with three joins per trans-
action (3 joins). We also ran a large-scale experiment with 600 GB and 200
partitions (120x DB size). Throughput/latency variation is the ratio between
the throughput after and before reconfiguration. tp is the time required by
the controller to load the graph and find a new plan. tr is the time Squall
takes to perform live migration. The total time to complete the reconfigura-
tion is the monitoring time (typically 20s) plus (tp + tr).

Thrpt Lat.
Vertices Edges Var. Var. tp tr

Original PPS 1.08m 5.41m 3.1× 15× 94s 21s

Low Skew 2.12m 11.98m 1.8× 2.6× 75s 31s
10× DB Size 1.64m 7.39m 3.9× 6.9× 83s 18s

2× Hosts 1.42m 7.37m 2.9× 18× 128s 16s
3 Joins 800.7k 5.76m 4.6× 6.1× 130s 19s

All 775.7k 4.68m 2.6× 3.1× 51s 32s

120× DB Size 2.28m 10.11m 2.5× 0.4× 99s -

followers/followees, selected according to a Zipfian distribution.

Lastly, we skewed the access patterns of the original benchmark so

that nodes (users) are chosen for transactions (1), (2), and (3) with

a frequency proportional to the log of their in-degree (number of

followers), and chosen for transaction (5) with a frequency propor-

tional to the log of their out-degree (number of followees). The fact

that a user’s frequency of activity in a social network is related to

their degrees has been observed in previous work [13, 10].

For this experiment, we evenly distributed the first 60,000 user

IDs from the 2009 Twitter graph across a cluster of four machines,

each with six partitions. Initially, the tweets and user profiles were

range-partitioned across the cluster by user ID in large contiguous

chunks. After using Clay to repartition the database, throughput

increased by 55% and latency decreased by 37%. The percentage

of distributed transactions was reduced from 3.2% to only 1.4%.

8.6 Scalability
In this section, we modify the PPS benchmark along several

axes and establish that workload skew is the dimension that has

the strongest impact on Clay’s effectiveness and running time.

We focus our evaluation on PPS because the size of the heat

graphs for TPC-C are much smaller: even if we increase the num-

ber of TPC-C warehouses to 500, thus obtaining a database of

50 GB, the heat graph still has only 2,496 vertices and 10,602

edges. This is because a single value of a partitioning attribute

in TPC-C corresponds to a larger number of tuples than in PPS.

Detailed Scalability Experiments. Table 1 reports the results of

different scalability tests on PPS. If we increase the size of the

database to 50 GB or double the number of hosts we see similar

gains as in the original PPS, and the complexity of clump migra-

tion does not grow significantly. Next, we changed PPS to include a

transaction that executes three joins instead of two. Specifically, we

replaced the transaction that accesses parts by product by a trans-

action that accesses products by supplier. Finally, we combined all

the aforementioned variations. In all cases, the size of the graph

and the time to compute a new plan do not vary significantly. The

heat graph always fits in the 4 GB of heap space assigned to our

controller, and the time to terminate a reconfiguration is on the or-

der of 100s of seconds. The highest increase in the size of the graph

was obtained by reducing the skew to a low degree (Zipfian with pa-

rameter 0.1 for all tuples except the hottest tuples, which get 4% of

the transactions). Even in this case, the time necessary to compute

a new configuration is low. The performance improvement of Clay

in this case is lower since the initial performance level is better.

0

2,000

4,000

6,000

8,000

10,000

12,000

D
a

ta
 M

o
v

e
d

(t
u

p
le

s
)

Data moved this reconfiguration Total data moved so far

0

2,000

4,000

initial state 1 2 3 4
Reconfigurations

P
la

n
 F

il
e

S
iz

e
 (

b
y

te
s

)

Figure 16: PPS Multiple Reconfigurations – The impact of multiple re-
configurations on the amount of data moved and the size of the plan file.

Table 2: Skew: Fraction of Requests to Hot Tuples in PPS – Effects of
changing the percentage of requests sent to the 6 hot suppliers (and their
co-accessed tuples) in PPS. See Table 1 for measurement descriptions.

% requests to Thrpt Lat.
hot tuples Vertices Edges Var. Var. tp tr

40 1.19m 6.04m 3.3× 4.1× 50s 14s
20 1.08m 5.41m 3.1× 15× 75s 31s
10 2.12m 11.98m 1.8× 2.6× 94s 21s

5 1.98m 11.38m 1.6× 2.3× 83s 17s
0 1.88m 10.53m 0.9× 0.9× 95s 11s

Table 3: Skew: Number of Hot Tuples in PPS – Effects of changing the
number of hot tuples in PPS, compared to the baseline with 6 hot suppliers
(and their co-accessed tuples). See Table 1 for measurement descriptions.

Thrpt Lat.
hot tuples Vertices Edges Var. Var. tp tr

1x 1.08m 5.41m 3.1× 15× 75s 31s
10x 1.89m 10.56m 2.2× 3.2× 106s 19s

100x 1.83m 10.45m 1.1× 1.1× 181s 15s

Large-scale experiment. Our experiments so far considered rel-

atively small datasets because populating a large database with H-

Store can be very time-consuming. We now show that changing the

database size alone does not significantly impact Clay’s behavior.

In this experiment, we run Clay with a very large deployment

of PPS with 600 GB and 200 partitions across 10 machines, thus

increasing the size of the database by more than 100 times. All

the other parameters of the benchmark are unchanged. As shown

in Table 1, the performance of Clay does not change significantly.

By increasing the database size 120 times, the number of edges

and vertices in the heat graph only doubles compared to the orig-

inal 5 GB PPS database. Throughput and latency performance is

slightly reduced compared to the smaller database because of hard-

ware limitations: we have only 10 servers for all client and server

threads, not enough to fully saturate such a large database. Squall

does not yet support 200 partitions, which is why we do not have

a value for tr . The amount of data moved is nearly identical to the

5 GB database, so we expect that tr would be similar.

This experiment shows that the computational complexity of Clay

does not change significantly. Increasing the size of the database

without changing the number of hot tuples only increases the num-

ber of cold tuples, which are not observed by Clay’s monitoring.

As shown in Table 1, the size of the heat graph in the large-scale

experiment is about the maximum size that we obtain by changing

other parameters such as skew. In general, the maximum size of

the heat graph is bounded since the vertices in the heat graph rep-

resent tuples accessed during the monitoring interval, and both the

monitoring interval and the throughput of the system are bounded.

Metadata Management. In all our experiments on PPS, the size of

the metadata (i.e., the routing table) does not vary significantly as

455

an effect of reconfiguration: in all the small experiments of Table 1,

the size of the routing table stayed within 2.2 KB and 4.4 KB. In the

large-scale experiment with 600 GB and 200 partitions, the routing

table ranged between 19.6 KB and 22.6 KB. This is because Clay

only moves a relatively small set of hot tuples. Routing tables in

TPC-C are similar to PPS in the standard setups.

Next, we validated that the size of the metadata is only a func-

tion of the number of currently hot clumps, and it does not grow

over time. We executed multiple reconfigurations in the PPS bench-

mark. In each configuration, we completely change the set of hot

tuples. The results are shown in Figure 16. The upper plot shows

the amount of data transferred at each reconfiguration as well as the

cumulative amount of data moved up to that reconfiguration. The

size of the routing table remains bounded because it is a function

of the data transferred in the current reconfiguration. It does not

depend on the cumulative amount of data moved over time.

The Role of Skew. As discussed, Clay is optimized to deal with

hot tuples, so it is expected to shine in workloads that are highly

skewed and to have lower performance with lower skew. Higher

skew also results in a smaller heat graph, which in turns speeds

up the reconfiguration process. Our evaluation confirms this ob-

servation. Table 2 reports the performance of Clay when varying

the percentage of requests that go to the hot tuples. As expected,

lower skew leads to a slightly larger graph, longer running times

of the controller, and lower performance gains. With no hot tuples

Clay minimally degrades performance, but in this circumstance we

would not expect Clay to be triggered. Table 3 shows the effect

of changing the number of hot tuples while keeping the fraction of

requests to them constant. Increasing the number of hot tuples has

a similar effect to reducing the skew, because now more hot tuples

are sharing the same number of requests. In all our experiments,

we observe that the size of the heat graph and the running time of

the clump migration algorithm stay within reasonable bounds.

9. CONCLUSION
This paper presented Clay, an on-line DBMS elasticity algorithm

that makes no assumptions about the database schema, and simulta-

neously balances load and minimizes distributed transactions. Clay

defines the unit of data migration, called the clump, in a novel way

by starting from a hot tuple and including other tuples co-accessed

with that hot tuple so that migrating the clump does not overload

the sending or receiving server with distributed transactions. Our

experiments show that Clay substantially outperforms state-of-the-

art database elasticity techniques.

10. REFERENCES
[1] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek, V. Khemani, S. Fulger, P. Gu,

L. Bhuvanagiri, J. Hunter, et al. Slicer: Auto-sharding for datacenter

applications. In USENIX Symposium on Operating Systems Design and

Implementation, pages 739–753, 2016.

[2] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon,

Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly

available storage for interactive services. In Conference on Innovative Data

Systems Research, pages 223–234, 2011.

[3] P. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan, G. Kakivaya, D. B. Lomet,

R. Manne, L. Novik, and T. Talius. Adapting Microsoft SQL server for cloud

computing. In IEEE International Conference on Data Engineering, pages

1255–1263, 2011.

[4] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi. Measuring user

influence in twitter: The million follower fallacy. In AAAI Conference on Web

and Social Media, pages 10–17, 2010.

[5] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: A workload-driven

approach to database replication and partitioning. Proceedings of the VLDB

Endowment, 3(1-2):48–57, 2010.

[6] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An elastic, scalable, and

self-managing transactional database for the cloud. ACM Transactions on

Database Systems, 38(1):5:1–5:45, 2013.

[7] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. Oltp-bench: An

extensible testbed for benchmarking relational databases. Proceedings of the

VLDB Endowment, 7(4):277–288, 2013.

[8] A. J. Elmore, V. Arora, R. Taft, A. Pavlo, D. Agrawal, and A. El Abbadi.

Squall: Fine-grained live reconfiguration for partitioned main memory

databases. In ACM SIGMOD International Conference on Management of

Data, pages 299–313, 2015.

[9] M. Ghosh, W. Wang, G. Holla, and I. Gupta. Morphus: Supporting online

reconfigurations in sharded nosql systems. In IEEE International Conference

on Autonomic Computing, pages 1–10, 2015.

[10] A. Gionis, F. Junqueira, V. Leroy, M. Serafini, and I. Weber. Piggybacking on

social networks. Proceedings of the VLDB Endowment, 6(6):409–420, 2013.

[11] Y.-J. Hong and M. Thottethodi. Understanding and mitigating the impact of

load imbalance in the memory caching tier. In ACM Symposium on Cloud

Computing, 2013.

[12] H-Store: A Next Generation OLTP DBMS. http://hstore.cs.brown.edu.

[13] B. A. Huberman, D. M. Romero, and F. Wu. Social networks that matter:

Twitter under the microscope. SSRN 1313405, 2008.

[14] A. Jindal and J. Dittrich. Relax and let the database do the partitioning online.

In International Workshop on Enabling Real-Time Business Intelligence, pages

65–80. 2012.

[15] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C.

Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store:

A high-performance, distributed main memory transaction processing system.

Proceedings of the VLDB Endowment, 1(2):1496–1499, 2008.

[16] G. Karypis and V. Kumar. Metis-unstructured graph partitioning and sparse

matrix ordering system, version 5.0.

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

[17] B. Liu, J. Tatemura, O. Po, W.-P. Hsiung, and H. Hacigumus. Automatic

entity-grouping for OLTP workloads. In IEEE International Conference on

Data Engineering, pages 712–723, 2014.

[18] M. A. U. Nasir, G. D. F. Morales, D. García-Soriano, N. Kourtellis, and

M. Serafini. The power of both choices: Practical load balancing for distributed

stream processing engines. In IEEE International Conference on Data

Engineering, pages 137–148, 2015.

[19] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Serafini. When two

choices are not enough: Balancing at scale in distributed stream processing. In

IEEE International Conference on Data Engineering, pages 589–600, 2016.

[20] R. Nehme and N. Bruno. Automated partitioning design in parallel database

systems. In ACM SIGMOD International Conference on Management of data,

pages 1137–1148, 2011.

[21] NuoDB. http://www.nuodb.com.

[22] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. PLP: Page latch-free

shared-everything OLTP. Proceedings of the VLDB Endowment,

4(10):610–621, 2011.

[23] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database

partitioning in shared-nothing, parallel OLTP systems. In ACM SIGMOD

International Conference on Management of Data, pages 61–72, 2012.

[24] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki. Atrapos: Adaptive

transaction processing on hardware islands. In IEEE International Conference

on Data Engineering, pages 688–699, 2014.

[25] A. Quamar, K. A. Kumar, and A. Deshpande. Sword: scalable workload-aware

data placement for transactional workloads. In International Conference on

Extending Database Technology, pages 430–441, 2013.

[26] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem, T. Rafiq, and U. F. Minhas.

Accordion: Elastic scalability for database systems supporting distributed

transactions. Proceedings of the VLDB Endowment, 7(12):1035–1046, 2014.

[27] M. Stonebraker, A. Pavlo, R. Taft, and M. L. Brodie. Enterprise database

applications and the cloud: A difficult road ahead. In IEEE International

Conference on Cloud Engineering, pages 1–6, 2014.

[28] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,

A. Pavlo, and M. Stonebraker. E-store: Fine-grained elastic partitioning for

distributed transaction processing systems. Proceedings of the VLDB

Endowment, 8(3):245–256, 2014.

[29] The TPC-C Benchmark, 1992. http://www.tpc.org/tpcc/.

[30] K. Q. Tran, J. F. Naughton, B. Sundarmurthy, and D. Tsirogiannis. JECB: A

join-extension, code-based approach to OLTP data partitioning. In ACM

SIGMOD International Conference on Management of Data, pages 39–50,

2014.

[31] B. Trushkowsky, P. Bodík, A. Fox, M. J. Franklin, M. I. Jordan, and D. A.

Patterson. The SCADS director: Scaling a distributed storage system under

stringent performance requirements. In USENIX Conference on File and

Storage Technologies, pages 163–176, 2011.

[32] S. Yang, X. Yan, B. Zong, and A. Khan. Towards effective partition

management for large graphs. In ACM SIGMOD International Conference on

Management of Data, pages 517–528, 2012.

[33] E. Zamanian, C. Binnig, and A. Salama. Locality-aware partitioning in parallel

database systems. In ACM SIGMOD International Conference on Management

of Data, pages 17–30, 2015.

456

http://hstore.cs.brown.edu
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.nuodb.com

	Introduction
	Overview
	Related Work
	Problem Statement
	Incremental Data Placement Problem
	Comparison with Graph Partitioning

	System Architecture
	Transaction Monitoring
	Clump Migration
	Dealing with Overloaded Partitions
	Estimating Deltas Efficiently
	Scaling In
	Routing Table Compaction

	Evaluation
	Environment
	TPC-C
	TPC-C/S
	Products-Parts-Suppliers
	Twitter
	Scalability

	Conclusion
	References

